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Summary 

Climate risk insurance models are increasingly relevant due to the rising losses attributable to 
climate change. This study provides a comprehensive review of the literature on climate risk 
insurance modeling to identify lessons learned and knowledge gaps to be addressed by future 
research. Furthermore, this research conducts a stakeholder analysis of the European Union 
insurance sector with risk assessment experts from insurance companies. The review finds that 
insurance models estimate risk for different perils and simulate risk-related parameters for 
insurance schemes, such as premiums and deductibles. Most forward-looking models indicate 
that climate change and socioeconomic developments highly exacerbate future risk and increase 
insurance premiums. Various studies recommend charging risk-based premiums to incentivize 
disaster risk reduction (DRR) efforts that limit this increase in climate risks. Other findings point 
toward introducing public-private insurance to cope with climate change and enhance risk 
spreading by introducing insurance purchase requirements or insurance products that cover 
multiple climate risks. Gaps that we identify in this literature review include an underrepresentation 
of insurance assessments for developing countries and for hazards other than flooding. 
Additionally, we note a lack of research into insurance for non-agricultural commercial sectors. 
Furthermore, less than half of the studies take a forward-looking approach by incorporating climate 
change scenarios, and an even smaller percentage consider socioeconomic development 
scenarios. This limitation shows that current methods require additional development for assessing 
the effects of future climate risk on insurance. We recommend that future research develops such 
forward-looking models, considers using a more refined spatial scale, broadens geographical and 
hazard coverage, and includes the commercial sector. Outcomes of the stakeholder analysis 
identify current challenges in state-of-the-art climate risk assessment approaches and explore 
innovative solutions to these challenges. Results reveal significant opportunities for incorporating 
long-term and adaptive views of climate risk into insurance modeling and pricing. This involves a 
deeper understanding of nonlinear environmental changes, fostering the development of replicable 
catastrophe risk models, increased use of emerging technologies, and leveraging open-source 
initiatives through increased intersectoral collaboration. By identifying these areas, the research 
supports the design of new insurance products that can better address climate change-enhanced 
risks. Future research directions based on the stakeholder analysis should focus on evaluating 
implementation of proposed solutions in practice. Ultimately, this study aims to contribute to more 
robust and adaptable insurance models, enhancing the resilience of the European Union in the 
face of climate change. 

Keywords 
actuarial models, catastrophe models, climate change, insurance, natural disaster risk. 
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1 Introduction 
Climate change will increase the frequency and severity of natural disasters (IPCC, 2023). Future 
risk will increase due to trends in climate extremes and socioeconomic developments like 
urbanization and population growth. The number of natural disasters with high economic impacts 
has tripled since the 1980s, and this trend is expected to continue into the future (Hoeppe, 2016). 
With an increasing number of individuals residing in hazard-prone areas, the potential for losses 
from climate-related events is anticipated to rise (IPCC, 2023). Natural disasters and future 
climate risk lead to significant direct and indirect damage for society (Botzen et al., 2019). 
Insurance can be a tool to soften this burden on society by compensating the losses to households 
and private businesses (Linnerooth-Bayer & Hochrainer-Stigler, 2015). An efficiently working 
insurance system accelerates recovery after a natural disaster, minimizes the damage to the 
economy, and can improve the resilience of communities against natural disasters by incentivizing 
disaster risk reduction (DRR) (Botzen, 2021). However, as of now, less than half of the global 
natural disaster losses are covered by insurance (Munich Re, 2023), indicating a large protection 
gap. 

Designing an effective insurance system to cover losses from natural disasters is a complex task 
(Surminski et al., 2016). A viable insurance system for natural disasters uses a multitude of 
variables to optimize its operations, including the spatial and temporal pooling of risk (to spread 
the risk through space and time), the combining the underwritten risk with other risks, and 
premium-setting rules such as making insurance for certain risks mandatory. In addition, the 
increase in natural hazards due to climate change (IPCC, 2023) and the increase in the exposure 
of assets and people (Hoeppe, 2016) necessitate larger (future) capital requirements for insurers. 
Consequently, this results in higher premiums for consumers, diminishing the appeal of purchasing 
insurance, increasing the insurance coverage gap (Botzen, 2021). Other challenges for 
developing a viable insurance system are the (often unexpected) high impacts of catastrophic 
events (Kousky & Cooke, 2012). Furthermore, climate change is often not addressed in current 
insurance schemes (Surminski, 2014), and there is much uncertainty in future climate risk 
projections, which increases uncertainty in future premium settings (Adger et al., 2018; Botzen, 
2021).  

The modeling of climate-related risk insurance is an emerging research field to prepare the 
insurance sector for the increasing natural disaster risk. By assessing how climate change may 
stress the insurance sector, strategies can be developed to enhance the resilience of this sector 
to increasing climatic risks. For example, insurance could stimulate risk-conscious decision-
making by policyholders, which may limit the impact of future climatic hazards. In light of the 
necessity for policyholders to make decisions considerably in advance of climate change impacts, 
it is imperative that the design of insurance policies embraces a long-term, future-oriented outlook. 

A key foundation of a climate risk insurance model is accurately estimating current and future risk 
through catastrophe modeling, actuarial approaches, or probability/theoretical methods. Over the 
last 20 years, numerous climate hazard and risk models for different perils have been developed. 
As a few examples, models for flooding such as Ward et al. (2013) and De Roo et al. (2000); 
models for wildfires such as Filippi et al. (2009); models for hurricanes such as Bloemendaal et al. 
(2020), Vickery et al. (2006), and Emanuel et al. (2006); or models for hail such as Brook et al. 
(2021).  
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In addition, a climate risk insurance model can be applied to assess the impacts of climatic risks 
on how supply and demand for insurance develops over time and space. A commonly employed 
model type for this purpose is an insurance supply model, which concerns the pricing of insurance 
contracts by simulating (risk-based) premiums (e.g., Aerts and Botzen, 2011). On the demand 
side, partial equilibrium models aim to simulate supply and demand in an insurance market or 
consider the effect of insurance on equilibrium conditions between marginal cost and marginal 
revenue for a business. In this way, it is possible to derive insights about insurance uptake (e.g., 
Tesselaar et al., 2020b) or how insurance can incentivize DRR (e.g., Hudson et al., 2016). 
Recently, agent-based insurance models have been developed, which aim to simulate the 
complex interactions in an insurance market between individual autonomous consumers, insurers, 
and the government (Dubbelboer et al., 2017).  

While recent research has reviewed climate insurance studies in a broad context (including 
sustainability issues; e.g., Nobanee & Nghiem, 2024) there is no systematic review of climate risk 
models for the insurance sector. Therefore, this paper primarily aims to review and synthesize the 
current literature about climate risk models for the insurance sector. This process will identify the 
key building blocks of such models, best practices, and lessons learned. Ultimately, this overview 
will provide recommendations for future model development, which can aid in closing the overall 
natural disaster protection gap. Since existing models are already used by the European Insurance 
and Occupational Pensions Authority (EIOPA, n.d.; Tesselaar et al., 2020b) or the European 
Central Bank (ECB & EIOPA, 2022), our review will offer valuable insights to policymakers and the 
insurance sector about how to address future climate challenges and how to close the natural 
disaster protection gap. This research will further examine real-world climate risk assessment 
practices in the European insurance industry to identify challenges and areas for innovation. A 
stakeholder analysis will be used for this purpose and to bridge the current theory-practice gap. 

The remainder of this paper is organized as follows: Sections 2 and 3 describe how the review 
and stakeholder analysis has been conducted, respectively. Section 4 reviews the literature by 
summarizing our findings in three parts: general model types, the risk component, and the 
insurance model component. Section 5 presents the findings of the stakeholder analysis 
systematically based on a developed conceptual framework. Sections 6 and 7 discuss the main 
research findings, policy implications and recommendations for future research according to the 
literature review and stakeholder analysis. Section 8 concludes the paper. 
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2 Methods of literature review 

2.1 Paper selection 
For this paper, a systematic literature review was conducted building on existing reviews (e.g., 
Aburto Barrera & Wagner (2023); Nobanee & Nghiem (2024)) by following three steps (Figure 1): 
(1) selecting keywords for querying articles, (2) querying articles within a literature database 
(Scopus), and (3) screening the queried articles for their suitability. 

2.1.1  Keywords 
For our review, we have addressed three keyword types: “hazard-related keywords,” “model 
keywords,” and “insurance keywords.” Using combinations of the three keyword types in the query 
with “AND” and “OR” Booleans ensures that only papers with abstracts that mentioned a hazard 
type, a model type, and an insurance-related word were selected. This action was undertaken 
with the intent of refining the query to encompass papers within the area of interest. However, to 
make the query more exhaustive, the keywords were often kept a bit broader. For example, in the 
hazard type keyword list, words such as “disaster” were also chosen. The selected keywords for 
the hazard, model, and insurance types are summarized in Table 1 of the Appendix. 

2.1.2 Query 
The “advanced search” function by Scopus was used to query the articles. We used Scopus 
because it was often used in similar literature reviews (Khatib et al., 2022; Nobanee et al., 2022; 
Nobanee & Nghiem, 2024). First, the potential search strings were tried to obtain several articles 
that were large enough to contain all the suitable papers but small enough to be feasible. Keywords 
consisting of multiple words were put between quotation marks to make sure Scopus would only 
look for instances where the entire keyword was present. The language was limited to English, 
and the document type was limited to peer-reviewed articles. The query was carried out over the 
title, abstract, and keywords of each article. The final query had 2,067 hits, which is comparable 
to similar reviews such as Aburto Barrera and Wagner (2023). The search string used can be 
found in the Appendix. 

2.1.3 Screening 
In the last step, the 2,067 articles selected by Scopus were screened using the AI-assisted 
screening tool Rayyan (Johnson & Phillips, 2018). Since the review focuses on the state of the art 
of insurance modeling, papers published before 2010 are excluded. Additionally, papers related 
to index or parametric insurance contracts were excluded because these types of insurance are 
deemed too dissimilar to the insurance under consideration in this study. After the manual 
screening, 50 papers were deemed within our scope and selected for a thorough review. During 
this process, 14 papers were deselected because they were out of scope, leaving 36 papers for 
the final analysis. The final 36 papers were analyzed based on the type of the model (Table 2 of 
the Appendix), the risk component of the model (Table 3 of the Appendix) and the insurance 
component of the model (Table 4 of the Appendix).  
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Figure 1: Selection process 

 

3 Methods of stakeholder analysis 
For the stakeholder analysis, this paper develops a conceptual framework that will ensure 
systematic analysis of the insights shared by experts in the field. This is followed by an elaboration 
of the methodology. That is, first the sampling procedure for the expert interviews is motivated. 
Second, the approach in which data is collected is clarified. Third and last, the systematic 
approach to data analysis is described, which eventually shapes the results that follow from all 
insights collected. 

3.1 Conceptual framework 
The three concepts of climate-related risk information, other model data inputs, and uncertainty 
factors are considered in climate risk modeling. Climate-related risk information is dependent on 
climate-related risk and climate data. Climate-related risk is a function of the hazard, the exposure 
of the portfolio, and vulnerability factors. A double arrow is drawn from climate-related risk to 
climate-related risk information as both affect the other, due to adaption and mitigation practices. 
Additionally, information on changing climatic factors can be used to improve understanding of 
the natural hazards and the impact that they might have, which is necessary to set accurate 
parameters in the models. Furthermore, several other data inputs can be used to evaluate risks, 
depending on the model type. These data inputs can include historical losses, which allow for 
projecting trends of economic impact based on past hazard losses. For forward-looking models, 
future data based on climate forecasting and projections can be incorporated. Additionally, socio-
economic factors need to be considered. For instance, population density, political decisions, or 
high inflation potentially affect damage outcomes (Landreau et al., 2021). Third, uncertainty 
factors reflect the unknown elements of climate change and natural hazard risk for which the 
models try to account. These can be, for example, tipping points, which are critical thresholds 
where small changes can lead to dramatic shifts in the climate system, or compound effects, which 
refer to the interaction of multiple climate hazards that amplify the overall risk. 

 

Initial Scopus 
query • n = 2067

Rayyan 
screening • n = 50

Thorough 
screening • n = 36
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Next, several types of climate risk models can be applied. Such models can be built in-house or 
bought from an external vendor party. The latter can be attractive since external parties might 
have more climate-related risk information and model-building resources. However, these models 
are often less transparent. The following step results in model outputs, which can consist of 
potential damage and risk distributions in the form of economic losses or natural hazard damage 
scenarios (Botzen, 2021). Concluding, this information is used in insurance decision-making on 
risk pricing, the development of insurance products, and long-term strategy of the insurance firm. 
The type of insurance product naturally depends on the type of natural hazard it relates to. Also, 
proper insurance products can foster the development and implementation of DRR measures by 
encouraging risk awareness and providing capital for risk reduction measures (Jarzabkowski et 
al., 2019). 

The conceptual framework provides the basis for developing a deductive coding scheme around 
which the interview data and results are systematically organised. 

 

Figure 2: Conceptual framework 
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3.2 Sampling 
To collect primary data from interviews, purposive sampling was used. Purposive sampling is a 
form of non-probability sampling in which participants are selected based on their expertise 
according to the research objectives. Participants are therefore chosen by judgment of the 
researcher, as only a specific type of candidate can properly serve as a primary data source due 
to the nature of the research objectives and the required expertise (Bell et al., 2019). The interview 
participants in this study are all experts in natural hazard risk modeling, climate risk insurance, 
and actuarial services in Europe. General role descriptions can be found in Table 5 of the 
Appendix. Professional networks within the Piloting Innovation Insurance Solutions for Adaptation 
(PIISA) project were leveraged to reach out to potential candidates. Also, participants were asked 
to refer other possible candidates in their network with expertise on the topic. A third method of 
participant recruitment was reaching out to potential participants on LinkedIn. Suitable candidates 
were contacted after looking at their field of work and relevant experience. A total number of 
sixteen participants were recruited for the interviews successfully. 

3.3 Data collection 
The data for this research was gathered through in-depth semi-structured interviews. This 
approach allows for a flexible exploration of pre-defined questions while leaving room for further 
exploration of unique experiences, viewpoints, or other themes. A total of twenty-four questions 
were formulated with help from focused discussions and peer-review by experts in the field that 
are connected to the PIISA project and institute of the lead researcher (Appendix). The questions 
start by discussing the use of climate risk information in insurance modeling and product design. 
Next, the questions cover model inputs, model outputs, the types of models used, and the 
adoption of forward-looking climate models. Lastly, the uncertainties of natural disaster risk 
modeling were discussed, as well as potential advancements in risk assessment approaches. 

The interviews were conducted online during a period between the start of April and mid-May 
2024, and lasted between 30 and 45 minutes. Prior to the start of the interview, confidentiality was 
promised, and consent to record the interview was confirmed. A test pilot interview was conducted 
in preparation of the expert interviews to test the materials and correct formulation of the 
questions. In addition, an ethics check by the Research Ethics Review Committee (BETHCIE) of 
the Faculty of Science at Vrije Universiteit (VU) Amsterdam was completed to ensure ethical 
practices throughout the data collection process. 

This research prioritizes ensuring the validity of its findings by adhering to the four key criteria 
established by Whittemore et al. (2001): credibility, authenticity, criticality, and integrity. Credibility 
and authenticity focus on accurately interpreting the meaning of the results and accurately 
representing participant experiences. To mitigate threats to validity such as distortion, bias, and 
inadequate representation of relevant constructs, the research employs several strategies. First, 
anonymity was guaranteed to encourage participants to speak freely. Second, interpretations of 
their experiences have been repeatedly confirmed with participants to ensure accuracy. Finally, a 
neutral and objective approach was maintained throughout the research process. Criticality and 
integrity are further ensured by thorough and objective interpretation of the data. As more data 
was collected and few new insights emerged, the findings became more trustworthy as a point of 
data saturation was reached. 
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Moreover, an online focused discussion was held with approximately fifty stakeholders involved or 
interested in climate risk modeling in April 2024 to understand in greater detail: (1) key perceived 
uncertainties in natural disaster risk modeling – participants could select up to four uncertainties 
(identified prior as key uncertainties) through a multiple-response question or could select an 
“other” option. The non-other options were future climate conditions, future population and 
economic growth, limited past data availability and difficulties of including adaptation dynamics; 
and (2) what is needed to advance natural disaster risk modelling – participants could state five 
needs in a multiple-response question or could select an “other” option. The non-other options 
were scientific insights, methods that include adaptation dynamics, methods to deal with multi-
hazard risk, better ways of addressing model uncertainty and more refined risk maps. The 
discussion aimed to assess how closely these stakeholder views aligned with the uncertainties 
and methodological needs identified during the interviews. 

3.4 Data analysis 
The data analysis process for the interviews consisted of several stages. First, the audio 
recordings of the sixteen interviews were used to transcribe the interviews. Transcribing the 
interviews was necessary for the coding process, while it also presented an opportunity to review 
the information that was given. During the transcription process, interpretations were made in 
some cases to exclude pauses and filler words and to correct grammar. Before conducting the 
data analysis, the first stage of Wright and Nyberg’s (2017) detailed reading of the collected data 
was applied. During this process, emphasis was placed on familiarising with the initial qualitative 
data, structuring the information, and cleaning the data. Next, all transcripts were imported into 
Atlas.ti. This program facilitates consistent and organized coding of large amounts of qualitative 
data. To systematically analyse the data, a preliminary coding scheme was developed deductively 
based on the conceptual framework. Figure 3 presents the initial codes, including their grouping. 

In accordance, one or more codes were applied to relevant data segments of the interview 
transcripts. During the coding process, the coding scheme was continually revised and refined to 
capture emerging themes and ensure consistency. For three overhead codes, namely “Hazard”, 
“Uncertainties & Challenges”, and “Innovation Potential”, sub-codes were derived inductively, 
inspired by the Gioia methodology (Gioia et al., 2013). A detailed description of this process can 
be found in the Appendix. Types of hazards mentioned in the interviews were registered for context 
purposes. In addition, topics concerning challenges and innovation potential that emerged during 
the interviews required special attention as they are the focus of this research. Figure 4 presents 
an overview of the sub-codes. After the first round of coding was completed, a second round of 
coding was initiated to re-examine and re-analyse the codes and categories applied thus far. The 
Appendix presents an example of the coding process of part of an interview. 

Atlas.ti’s features were used to create a visual representation of code co-document networks and 
code-occurrences. Visualising the data structure is pivotal for qualitative research design as it 
facilitates increasing levels of abstraction by capturing relationships between groups and codes. 
Identified relationships were subsequently used to create a narrative and to interpret the 
significance of outcomes in relation to the research question and existing literature (Gioia et al., 
2013; Miles et al., 2014). 
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Figure 3: Coding scheme 
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Figure 4: Inductively derived sub-codes 

 

 

4  Results of literature review 
The commonality among all papers in this review is that they compute an insurance premium 
based on a climatic risk. In accordance with the 3 tables defined in the method section 2 (model 
type, risk component, insurance component), the results section will review these three aspects.  

4.1 Model type  
Based on our review, we distinguish three methods of operationalizing risk assessment: 
catastrophe modeling, actuarial modeling, and theoretical modeling. When the climatic hazard is 
operationalized as a risk via either catastrophe modeling, an actuarial approach, or a 
probabilistic/theoretical approach, the estimated risk can be used in an insurance model. We 
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distinguish four types of insurance modeling: insurance supply models, partial equilibrium models, 
agent-based models, and “other models,” which comprise model types that are less prevalent in 
the literature. This section summarizes the findings about the three risk component types and four 
insurance component types. Figure 5 indicates the number of papers per model type. For 
information about the reviewed models, refer to Table 2 of the Appendix. 

 

Figure 5: Number of papers per model type 

4.1.1  Risk model 
Catastrophe models 

In catastrophe modeling, risk is simulated by combining information on hazard impacts and 
associated occurrence probabilities with the exposed elements at risk and their vulnerability 
(Grossi et al., 2005). Often, hazard impacts and probabilities enable the construction of 
exceedance probability curves, which illustrate the likelihood of a loss surpassing specific 
threshold values. However, there are also more simplified catastrophe models that only combine 
hazard footprints (e.g., flood extent, windstorm field, or areas subject to heatwaves) with exposure 
data on buildings infrastructure to estimate risk without addressing the probability of such events 
(Grossi et al., 2005). Most papers employ a catastrophe model because risk related to high-impact 
low-probability hazards is impaired by a lack of available observed loss data due to this low 
probability of occurrence. Hence, hazards such as flooding, hurricanes, and earthquakes are 
mostly estimated via catastrophe modeling (e.g., Tesselaar et al., 2022; de Ruig et al., 2022; Aerts 
& Botzen, 2011; Boudreault et al., 2020; Peng et al., 2014; Perazzini et al., 2022; but see Sidi et 
al., 2017). An alternative rationale for the frequent use of catastrophe models is their ability to 
flexibly accommodate future climatic and socioeconomic conditions. A potential drawback of 
catastrophe modeling is that it requires an often computationally expensive multi-layered 
approach with data on hazard probabilities, exposure, and vulnerability (e.g., Boudreault et al. 
(2020), de Ruig et al. (2023), or Ermolieva et al., 2017). The resulting outputs of a catastrophe 
model (loss or risk) can be plotted in a spatial manner using maps showing risk per pixel or per 
administrative unit.  

Actuarial models 
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A subset of papers uses an actuarial base for their model. Instead of being simulation based as 
with catastrophe models, actuarial models estimate risk based on actual events with loss data 
(Boudreault et al., 2023). Actuarial models are mostly applied to windstorm (El-Adaway, 2012) 
and wildfire hazards (Barreal et al., 2014; Brunette et al., 2015; Pinheiro & Ribeiro, 2013, 
Thompson et al., 2015). Using empirical loss data, the risk can be estimated using econometric 
methods such as regression models. Examples are Pinheiro and Ribeiro (2013), who used the 
expected annual average burned area per municipality based on historical fire occurrences and 
the annual average burned area and Barreal et al. (2014), who used regression models to estimate 
wildfire risk based on socioeconomic, geographical, and climate-related variables. El-Adaway 
(2012) showed that actuarial models can be combined with bootstrapping to enhance loss 
observations; in this application, three datasets of 5,000 observations were created from 2,000 
actual windstorm observations. An advantage of an actuarial approach is the possibility to 
elucidate potential trends that do not yet have a physical understanding (Boudreault et al., 2023). 
On the other hand, given the high-impact low-probability nature of climatic disasters such as 
flooding, there is often a lack of historical data on these events to apply a statistical analysis (but 
see Islam et al. [2021] for an actuarial model applied to flooding).  

Theoretical models 

One reviewed paper does not apply its model to a case study (Brunette et al., 2017). This model 
treats risk as a simple stochastic variable. Therefore, the model does not simulate risk using an 
underlying catastrophe model and is not based on empirical data. We classify this model as a 
purely theoretical model, as there is no underlying risk model specified. 

4.1.2  Insurance model 
Insurance supply models 

The most common insurance application is the insurance supply model. An insurance supply 
model concerns the pricing of insurance contracts. An example of such a model is applied in Aerts 
and Botzen (2011), which calculated the future evolution of risk-based premiums for flooding in 
the Netherlands using a catastrophe model, considering several socioeconomic and climate 
change scenarios. The premium was calculated per administrative area based on its expected 
annual damage (EAD) divided by the number of houses per administrative area. This risk estimate, 
together with a loading factor that represents the operational costs of providing insurance as well 
as a profit margin, provided an estimate of the premium per household. Using this method, a stark 
increase in insurance premiums over time was found due to climate change and socioeconomic 
developments and the fact that the uncertainty around these future developments complicates 
the insurers’ rate-setting of long-term contracts. Another example is Brunette et al. (2015), who 
estimated premiums for multi-hazard forest insurance using an actuarial approach in combination 
with an insurance supply model. With this method, it was found that the most efficient procedure 
is to assume independence between the natural hazards, which in reality cannot be a fair 
assumption, in particular in the case of compound events. 

Most insurance supply models incorporate spatially explicit, risk-based premiums, relying on 
catastrophe models or actuarial methods to assess spatial risk. Examples of models that employ 
a model with spatially explicit, risk-based premiums can be found in Boudreault & Ojeda (2022), 
Boudreault et al. (2020), El-Adaway (2012), Kalfin et al. (2022), and Sacchelli et al. (2018). 
Generally, the premium’s spatial resolution is limited by the complexity of the underlying risk 
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module. Some models calculate premiums with a high spatial resolution, such as Boudreault et al. 
(2020), in which premiums are calculated per individual house, aiming to explore methods for 
mitigating adverse selection. Calculating risk-based premiums at a high resolution has the 
advantage of accurately reflecting the risk of the area and potentially incentivizing DRR effort. 
However, according to Botzen (2021), risk-based premiums can lead to unaffordability in high-
risk areas and may influence location decisions. This means that a pricing application alone is 
often not enough to answer all insurance-related challenges. More intricate insurance applications 
such as partial equilibrium models not only compute premiums but also leverage these premium 
data in subsequent modules to, for example, obtain insights into insurance demand or DRR efforts.  

Partial equilibrium models 

Partial equilibrium models assess equilibrium conditions in a particular market, ceteris paribus 
(Varian, 2014). There are no feedback effects that alter the fundamental supply and demand 
relationships defined in advance (Mas-Colell et al., 1995). A partial equilibrium application is useful 
for determining equilibrium outcomes in an insurance market or considering the effect of insurance 
on equilibrium conditions between marginal cost and marginal revenue for a business.  

By simulating insurance market conditions, insights about insurance uptake, such as the 
uninsured portion of risk or the unaffordability of insurance, can be obtained. These insights are 
showcased by studies on the European flood insurance market. An example is Tesselaar et al. 
(2020b), who found that insurance unaffordability will increase due to climate change and 
socioeconomic development by simulating premium prices and insurance demand for various 
scenarios. Another area in which partial equilibrium applications prove useful is when the effect of 
insurance on (agri) businesses is considered. For example, Brunette et al. (2017) analyzed the 
effect forest insurance can have on the implementation of DRR efforts by examining the marginal 
cost and benefit of insurance in different situations. Results showed that including DRR efforts in 
forest insurance contracts is a beneficial tool to promote DRR efforts, especially if the type of DRR 
effort is unobservable to the insurer. In a similar study, Barreal et al. (2014) examined the effect 
of insurance on the net present value of forest investments by analyzing the equilibrium between 
marginal DRR cost and benefit. Results showed that insurance plays a larger role in increasing the 
net present value of forest investments when restoration costs are included in the insurance policy. 
When insurance supply systems are considered, a partial equilibrium application can also be used 
to compare different insurance supply systems on key characteristics such as premiums and 
demand (Hudson et al., 2019; Tesselaar et al. 2020a, 2020b). Thereby, the model can be used 
to obtain insights into the desirability of insurance market reforms through evaluating both their 
supply and demand side effects. 

Agent-based insurance models 

Agent-based models (ABMs) subdivide complex systems into a flexible simulation framework of 
individual autonomous, heterogenous, and active components (agents), which is useful for 
investigating complex and emerging agent behavior (Crooks & Heppenstall, 2012). ABMs offer 
valuable insights for climate risk insurance modeling by simulating the intricate interactions and 
dynamic behaviors among consumers and insurers in the market, thus providing valuable insights 
into (emerging) consumer behavior. It is noteworthy that all reviewed papers with an ABM 
application consider flood insurance. One example is a study by Dubbelboer et al. (2017), which 
applied an ABM to simulate U.K. housing market to assess the viability of the FloodRe scheme. 
Another example is a study on the U.S. flood insurance system by de Ruig et al. (2022), 
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investigated the societal benefits of risk-based premiums in a changing climate. The type of 
consumer behavior that is modeled in ABMs usually comprises insurance uptake (Crick et al., 
2018; de Ruig et al., 2022, 2023; Dubbelboer et al., 2017; Jenkins et al., 2017;Tanaka et al., 
2022), implementing DRR methods (de Ruig et al., 2022, 2023; Crick et al., 2018; Dubbelboer et 
al., 2017; Jenkins et al., 2017), and the decision to purchase property (Crick et al., 2018; 
Dubbelboer et al., 2017; Jenkins et al., 2017; Tanaka et al., 2022).  

The interactions in the ABMs depend on the modeled agents and the focus of the model. 
Interactions are commonly modeled between consumers and the development of risk (de Ruig et 
al., 2022, 2023) or impact (Crick et al., 2018; Dubbelboer et al., 2017; Jenkins et al., 2017) of a 
flood event. In de Ruig et al. (2022) and de Ruig et al. (2023), households evaluate the risk of 
flooding and base the decision to take DRR measures or insurance on the severity of the risk they 
face. In studies by Dubbelboer et al. (2017), Jenkins et al. (2017), and Crick et al. (2018), 
households base the decision of taking DRR measures on whether a flood event occurred.  

Another common interaction addressed in ABMs is an interaction between households and the 
insurance market. In studies by de Ruig et al. (2022) and de Ruig et al. (2023), households decide 
each year whether to purchase insurance or not. This decision is linked to a subjective expected 
utility function that takes the (risk-based) premium calculated by the insurance sector, the budget 
of the household, and a deductible into account. In studies by Dubbelboer et al. (2017), Jenkins 
et al. (2017), and Crick et al. (2018), households are mandated to take flood insurance but can 
influence their premium by moving to another location or undertaking DRR measures. Tanaka et 
al. (2022), Dubbelboer et al. (2017), Jenkins et al. (2017), and Crick et al. (2018) also modeled 
an interaction between households and the housing market. In Tanaka et al. (2022), households 
decide whether to move or not based on a utility function that considers flood risk reflected by the 
insurance premium. 

Allowing for individual agent behavior is useful concerning the implementation of DRR measures 
(Crick et al., 2018; de Ruig et al., 2022, 2023; Dubbelboer et al., 2017; Jenkins et al., 2017). 
Furthermore, de Ruig et al. (2022) and de Ruig et al. (2023) showed that modeling interactions 
between consumers and the insurance market leads to useful insights about insurance uptake 
and affordability. Another strength of an ABM is its suitability for integrating climate change and 
socioeconomic development scenarios. This is also reflected in the fact that all reviewed agent-
based models include at least one climate change scenario. Moreover, since an ABM often 
includes data on the characteristics of agents such as income, socioeconomic development 
scenarios are often applicable (de Ruig et al., 2022, 2023; Tanaka et al., 2022). A typical caveat, 
though, of these models is that the modeler can define virtually any type of rules for the agents to 
follow, and hence ABM offers a powerful approach to diagnose and better understand 
mechanisms underlying the model assumptions, but it is less effective in helping discovering 
general patterns and mechanisms that are beyond the model assumptions. 

Other insurance model types 

There are two other insurance model types that can be distinguished in the literature. Birghila et 
al. (2022) and Islam et al. (2022) employed an insurance demand model. The goal of an insurance 
demand model is to obtain an insight into the demand for insurance. Birghila et al. (2022) did this 
by analyzing the optimal risk layering of insurance contracts per recipient to maximize uptake 
under ambiguity. Islam et al. (2022) analyzed the willingness to pay for insurance via a logit model 
based on a field survey. Another insurance model type is a game theoretic model. A game 
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theoretic model shares similarities with an ABM but places a greater emphasis on equilibrium 
conditions and optimization (De Marchi & Page, 2014). Utilizing game-theoretic models proves 
useful in capturing the dynamics between the demand and supply sides of insurance. This 
framework offers valuable insights into the strategic choices made by both insurers and insurance 
consumers. An example is Peng et al. (2014), who highlighted the existence of policies that include 
retrofitting and make all actors (households, government, insurers, and reinsurers) better off than 
a policy that does not include retrofitting. Game-theoretic models can serve as a valuable tool for 
analyzing the wider implications of insurance, retrofitting initiatives, and the acquisition of high-risk 
properties on overall losses, as discussed by Guo et al. (2022). 

4.2 Risk 
Risk can be subdivided into hazard, vulnerability, and exposure (IPCC, 2012), where the hazard 
is defined as the frequency and intensity of the natural hazard, exposure as the presence of 
exposed values, such as buildings, property, or crops that can adversely affected, and vulnerability 
as the susceptibility of these exposed values to losses (Botzen, 2021). 

This section reviews the modeling input referring to the risk component of the model. Details about 
the risk component per reviewed paper can be found in Table 3 of the Appendix. 

4.2.1  Hazard 
In this paper, we identify five climatic hazard groups: flooding, wildfires, hurricanes, windstorms, 
and other hazards.  

Flooding is overrepresented in the literature, with more than half of the papers being applied to 
flood hazards. We further divide flood hazards into three subcategories: riverine flooding (Aerts & 
Botzen, 2011; Boudreault et al., 2020; Boudreault & Ojeda, 2022; de Ruig et al., 2022; Ermolieva 
et al., 2017; Hudson et al., 2016, 2019; Moosakhaani et al., 2022; Sidi et al., 2017; Tanaka et al., 
2022; Tesselaar et al., 2020a, 2020b, 2022; Unterberger et al., 2019), coastal flooding (Aerts & 
Botzen, 2011; de Ruig et al., 2022, 2023; Ermolieva et al., 2017), and other flooding (which 
consists of pluvial flooding [Tanaka et al., 2022], surface water flooding [Crick et al., 2018; 
Dubbelboer et al., 2017; Jenkins et al., 2017], flash floods [Islam et al., 2022], and flooding in 
general [Perazzini et al., 2022]). Of these types, riverine flooding accounts for more than half of 
the flood modeling papers. In some cases, a combination is used between riverine flooding and 
another type of flooding (e.g., Aerts and Botzen, 2011; Ermolieva et al., 2017; Tanaka et al., 2022). 
Moreover, coastal flooding is used in all but one case (de Ruig et al., 2023), in combination with 
riverine flooding. Of the other hazard types, hurricanes/cyclones (Guo et al., 2022; Kesete et al., 
2014; Kunreuther et al., 2013; Peng et al., 2014; Walker et al., 2016) and wildfires (Barreal et al., 
2014; Brunette et al., 2015; Pinheiro & Ribeiro, 2013; Sacchelli et al., 2018; Thompson et al., 
2015) occur the most. To a lesser extent, there are models about windstorm insurance (El-
Adaway, 2012; Loisel et al., 2020; Sacchelli et al., 2018). The group “other hazards” consists of 
forest-related damages (Brunette et al., 2015, 2017), earthquakes (Perazzini et al., 2022), debris 
flows (Ding et al., 2012), drought (Birghila et al., 2022), and natural disasters in general (Kalfin et 
al., 2022).  

Most of the reviewed papers tend to employ models that exclusively focus on addressing individual 
natural hazards. A few examples of models that allow for a multi-hazard approach are models by 
Brunette et al. (2015) and Sacchelli et al. (2018). These are both forest insurance papers. 
Perazzini et al. (2022) explicitly used both a single-hazard and a multi-hazard insurance policy in 
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their case study. The low attention to multi-hazard insurance indicates a gap in the climate 
insurance modeling literature: Compound climate risks are increasing rapidly, and an expanding 
literature focuses on multi-hazard climate risk assessments (IPCC, 2023), but multi-hazard risks 
are not often considered in climate insurance models. 

The way in which the hazard is operationalized varies by hazard group and risk model type. For 
flooding, the hazard is commonly determined as the inundation extent with a certain return period 
in a certain grid cell or area (Aerts & Botzen, 2011; Boudreault & Ojeda, 2022; Crick et al., 2018; 
de Ruig et al., 2022, 2023; Dubbelboer et al., 2017; Hudson et al., 2016, 2019; Jenkins et al., 
2017; Tanaka et al., 2022; Tesselaar et al., 2020a, 2020b 2022). This means that inundation 
depths are linked to a certain probability each year per grid cell or area. This probability and 
inundation depth can then be used in combination with exposure and vulnerability data to estimate 
the expected annual damage. Concerning hurricanes, Guo et al. (2022), Kesete et al. (2014), and 
Peng et al. (2014) all used a set of probabilistic hurricane scenarios based on historical records 
first developed by Apivatanagul et al. (2011). These hurricane scenarios comprise a track with 
certain parameters that determine the intensity and probability of occurrence. Kunreuther et al. 
(2013) similarly used hurricane scenarios but developed by a climate-catastrophe modeling 
approach. For wildfires, the hazard is usually determined as a probability per area based on 
historical wildfire occurrence (Barreal et al., 2014; Pinheiro & Ribeiro, 2013; Sacchelli et al., 2018). 
These probabilities are more often denoted by region rather than grid cell, in contrast with flooding. 
Similar to the assessment of wildfires, the evaluation of windstorm hazard usually relies on 
historical data analysis (El-Adaway, 2012; Sacchelli et al., 2018; but see Loisel et al. (2020), which 
uses return periods). 

4.2.2  Exposure 
For flooding, exposure is commonly operationalized via data about land use (Aerts & Botzen, 
2011; Boudreault et al., 2020; Crick et al., 2018; de Ruig et al., 2022, 2023; Dubbelboer et al., 
2017; Ermolieva et al., 2017; Hudson et al., 2016, 2019; Jenkins et al., 2017; Tanaka et al., 2022; 
Tesselaar et al., 2020a, 2020b, 2022; Unterberger et al., 2019). However, there are differences 
in the resolution of this approach. For example, while it is common to use aggregated information 
about land use, Boudreault et al. (2020) used data for single houses, including characteristics 
such as number of floors and main usage. Furthermore, forward-looking models often include GDP 
growth and population growth as a proxy for the growth in exposure (Aerts & Botzen, 2011; de 
Ruig et al., 2022, 2023; Hudson et al., 2016, 2019; Tanaka et al., 2022; Tesselaar et al., 2020a, 
2020b, 2022; Unterberger et al., 2019). 

In hurricane-focused insurance models, there is a heavier focus on residential buildings than in 
insurance models for flooding. Hence, the approach is less land use-based and more focused on 
the buildings themselves. Exposure can be aggregated by building class (Guo et al., 2022; Kesete 
et al., 2014; Peng et al., 2014) or be based on the value of assets in an insurance portfolio 
(Kunreuther et al., 2013) or the value per building (Walker et al., 2016).  

Papers considering wildfire insurance models are mostly forestry related. This means that 
exposure input data for these models are related to forest stand value (Barreal et al., 2014; 
Brunette et al., 2015, 2017; Sacchelli et al., 2018). It is common to relate this value to the age of 
the forest stand. 
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Concerning windstorm insurance models, the approach is similar to wildfire insurance models, as 
both categories are mostly applied to the forestry sector (Brunette et al., 2015; Loisel et al., 2020).  

4.2.3  Vulnerability 
For flooding, vulnerability is commonly depicted by depth-damage curves (Aerts & Botzen, 2011; 
Boudreault et al., 2020; Boudreault & Ojeda, 2022; Crick et al., 2018; Dubbelboer et al., 2017; 
Ermolieva et al., 2017; Hudson et al., 2016, 2019; Jenkins et al., 2017; Tesselaar et al., 2020a, 
2020b, 2022; Unterberger et al., 2019). A depth-damage curve relates inundation depth to 
monetary damage (Huizinga et al., 2017). In this manner, vulnerability can be operationalized by 
assigning distinct depth-damage curves to various buildings or land-use categories. For riverine 
and coastal flooding, protection standards such as dykes and levees are often considered (Aerts 
& Botzen, 2011; Hudson et al., 2016, 2019; Tesselaar et al., 2020a, 2020b, 2022; Unterberger 
et al., 2019). 

Concerning hurricanes, Kunreuther et al. (2013) differentiated between two vulnerability 
conditions, one with risk limitation standards compliant with local building codes and one with the 
current observed risk limitation standards. Similarly, (Walker et al., 2016) differentiated between 
two vulnerability conditions: current practice and more stringent design. Other examples include 
modeling the building resistance level as a parameter and dividing buildings into classes based on 
location and category (Guo et al., 2022; Kesete et al., 2014; Peng et al., 2014).  

Since wildfire insurance models are mainly targeted to forestry insurance, modeling input 
concerning vulnerability to wildfires is also mostly targeted to forestry practices. One way in which 
vulnerability is translated for the forestry sector is as a forest management parameter. This 
parameter stands for the level of preventative measures that are taken and is inversely related to 
the risk (Barreal et al., 2014). Another paper makes use of empirical vulnerability functions based 
on the age class of the trees and the probability of destruction (Brunette et al., 2015).  

Similar to wildfires, windstorm vulnerability is also mainly targeted to forestry insurance. The 
empirical vulnerability functions in Brunette et al. (2015) are also applied to windstorms. 
Concerning trees, the effect of age on vulnerability is more apparent for windstorms than for 
wildfires (Loisel et al., 2020). Loisel et al. (2020) operationalized this vulnerability by examining 
age-dependent tree characteristics, specifically diameter and height. They posited that an 
increase in the percentage of damaged trees occurs when these characteristics attain higher 
values. 

4.2.4  Location 
There is only one paper that did not apply its model to a location-based case study but rather 
considered a generic forest and forest owner (Brunette et al., 2017). More than half of the 
reviewed papers applied their model to a case study that occurs in Europe (e.g., Barreal et al., 
2014; Birghila et al., 2022; Dubbelboer et al., 2017; Hudson et al., 2019; Loisel et al., 2020; 
Sacchelli et al., 2018; Tesselaar et al. 2022; Unterberger et al., 2019). Of the remaining papers, 
most of the case studies take place in the United States (e.g., de Ruig et al. (2022), El-Adaway 
(2012), Guo et al. (2022), Kesete et al. (2014)). A few papers feature a case study in Asia (e.g., 
Ding et al., 2012; Sidi et al., 2017; Kalfin et al., 2022; Islam et al. 2022). Boudreault & Ojeda 
(2022) and Boudreault et al. (2020) conducted a case study in Canada. Walker et al. (2016) 
applied their model to a case study in Australia. The predominant pattern here is that climate risk 
insurance models are most often applied to western and developed countries compared to less-
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developed countries. For instance, no model is applied to Africa or South America, which are 
areas that are more vulnerable to climatic hazards (IPCC, 2023) and might, therefore, benefit from 
insurance coverage. A possible explanation for the lack of case studies in these regions is the 
requirement of high-level input data, which are often harder to acquire in less-developed countries. 
Innovations in the usage of satellite imagery might offer a solution for this problem (Islam et al. 
(2022). For non-forestry applications, El-Adaway (2012) used actual loss events to link the 
expected loss to a geographical location. 

4.2.5  Scenarios 
Models that are forward-looking use projections of how the risk develops over time. This is often 
done by using a climate change scenario in the risk component of the model. Due to the 
uncertainty of climate change, it is common to use multiple climate change scenarios in estimating 
future natural disaster risk. 

About half of the reviewed papers can be classified as forward-looking. These papers considered 
at least one climate change scenario in their approach. The scenarios considered are often the 
Representative Concentration Pathways (RCPs). RCPs are radiative forcing trajectories until 2100 
for different climate change scenarios, ranging from 2.6 to 8.5 W/m2 (van Vuuren et al., 2011). 
These trajectories can be employed to simulate future climate conditions in a model and, if multiple 
RCPs are used, compare the model under different climate change scenarios. If multiple climate 
change scenarios are employed, such as a low RCP and a high RCP, it becomes possible to set 
a lower and upper bound on the possible outcomes of a model, capturing the uncertainty around 
climate change. There are, however, several papers that can be considered forward-looking but 
only employ one climate change scenario.  

More than half of the papers that applied a climate change scenario to their model also applied a 
socioeconomic development scenario. There are no instances where only a socioeconomic 
development scenario is applied. The socioeconomic development scenarios often used are the 
Shared Socioeconomic Pathways (SSPs). SSPs describe different socioeconomic development 
trajectories such as sustainable development and fossil-fueled development (Riahi et al., 2017). 
The SSP2 (middle of the road) and SSP5 (fossil-fueled development) scenarios are often paired 
with the RCP4.5 and RCP8.5 scenarios, respectively, as they have similar traits (e.g., de Ruig et 
al. (2022), and Tesselaar et al. (2020a)). Another way in which socioeconomic development 
scenarios are being used is in the form of simulating future land use (for example, Tesselaar et al. 
(2022) or Aerts and Botzen (2011)). Tanaka et al. (2022) incorporated income and house prices 
that increase over time, reflecting a constant economic growth rate. 

4.2.6  Disaster risk reduction (DRR) 
DRR measures to reduce climate risk are often accounted for. More than half of the reviewed 
papers include some form of DRR. Often, these papers employ a forward-looking model by means 
of a climate change scenario, as modeling DRR measures is especially interesting for forward-
looking models.  

In reality, DRR is usually financed by governments and consumers of insurance. Of the papers 
that included DRR, most did so for DRR financed by households (e.g., Hudson et al., 2016; de 
Ruig et al., 2023; Tesselaar et al., 2022) or by both households and the government (e.g., Peng 
et al., 2014; Jenkins et al., 2017; Guo et al., 2022). A subset of the reviewed papers included DRR 
measures financed by agribusinesses, such as Barreal et al. (2014), Birghila et al. (2022), or 
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Brunette et al. (2017). Furthermore, Aerts and Botzen (2011) and Unterberger et al. (2019) 
considered DRR financed by only the government. Models that consider insurance against 
wildfires and/or storms generally did not include DRR (but see Barreal et al. (2014)). However, 
DRR measures against these hazards do exist (Manocha & Babovic, 2017; Paveglio et al., 2018).  

When a premium is risk-based, investing in DRR measures can potentially lower this premium. 
This not only incentivizes proactive risk management but also promotes broader societal 
engagement in resilience-building efforts. This ultimately fosters a more economically viable and 
secure environment for both insurers and policyholders. An important question is how insurance 
arrangements can incentivize investment in risk reduction measures (Botzen, 2021). The idea of 
using insurance to stimulate DRR is explored in multiple papers and across hazard type (e.g., 
Brunette et al., 2017; Hudson et al., 2016; Jenkins et al., 2017; Peng et al., 2014). For example, 
Hudson et al. (2016) showed that correctly incentivizing DRR via insurance can lead to a reduction 
in household flood risk of 12% in Germany and 24% in France by 2040. 

4.3 Insurance  
This section summarizes findings about the insurance component of the model. Details per 
reviewed paper can be found in Table 4 of the Appendix. 

4.3.1  Recipient and the decision to insure 
About two-thirds of the reviewed studies concerns insurance for households. Two papers included 
insurance for households in combination with insurance for another entity; Moosakhaani et al. 
(2022) used a model where both households and the government are insured, and Ermolieva et 
al. (2017) used a model where households and firms are insured. Furthermore, some papers 
modeled insurance for structures such as civil infrastructure developments (El-Adaway, 2012; 
Unterberger et al., 2019) or insurance for buildings in general (Sidi et al., 2017). Multiple papers 
modeled agricultural insurance, of which two papers concerned some form of crop insurance 
(Birghila et al., 2022; Islam et al., 2022), and six papers focused on insurance for forestry (Barreal 
et al., 2014; Brunette et al., 2015, 2017; Loisel et al., 2020; Pinheiro & Ribeiro, 2013; Sacchelli et 
al., 2018). While agricultural insurance can be considered as insurance for firms, Ermolieva et al. 
(2017) is the only paper that considered insurance for general firms alongside households by using 
land-use maps. 

Models that are not only supply-focused also often incorporate a consumer decision component. 
This decision component indicates, if applicable, the way in which the decision to purchase 
insurance is made. Insurance uptake can be summarized into two categories: mandatory uptake 
and voluntary uptake. Concerning mandatory uptake, the premium can be risk-based when a 
solidarity market structure is concerned (Hudson et al., 2019; Tesselaar et al., 2020a, 2020b, 
2022). There are also examples of papers that use mandatory uptake but do connect the premium 
to the risk. These papers either assume that all constituents purchase insurance (Aerts & Botzen, 
2011; Crick et al., 2018; Dubbelboer et al., 2017; Jenkins et al., 2017) or a given percentage of 
households (Tanaka et al., 2022). For voluntary uptake, the decision to insure is based on 
expected utility maximization. In this way, the insurance recipient (commonly households) makes 
the decision based on a (subjective) utility curve. In essence, the insurance recipient determines 
whether acquiring insurance provides greater value than not obtaining insurance by weighing the 
prospective loss against the premium payment. The way in which this decision method is 
employed varies mostly in the degree of rationality that is assumed. In Kesete et al. (2014), the 
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insurance recipient is assigned a risk aversion coefficient based on the risk region but has no 
specific rationality constraint. This differs from the model employed by, for example, Hudson et al. 
(2019) and Tesselaar et al. (2020b), where a subjective expected utility framework is used. The 
subjective expected utility framework incorporates variations in risk perception from the objective 
risk to account for bounded rationality. Subjective expected utility is also used in studies by de 
Ruig et al. (2022) and de Ruig et al. (2023), where households are assumed to overestimate their 
risk after a flood event and underestimate their risk after a period of no floods. Other models that 
make use of an expected utility curve but do not include a rationality constraint can be found in 
studies by Ding et al. (2012), Peng et al. (2014), and Brunette et al. (2017). 

4.3.2  Insurance sector modeling  
Climate risk insurance is organized differently across countries and hazard types (Le Den et al., 
2017). Moreover, insurance can be arranged privately, publicly, or a combination of the two 
(Hudson et al., 2019). 

Insurance supply models predominantly concentrate on the pricing aspect of an insurance 
contract and typically omit explicit consideration of the insurer as an agent (e.g., Boudreault et al., 
2020; Brunette et al., 2015; Sacchelli et al., 2018). More often, the insurer as an agent is 
incorporated, but only one representative insurer is assumed to exist (e.g., Kalfin et al., 2022; 
Birghila et al., 2022; Kesete et al., 2014). Not including an insurer as an agent or assuming the 
insurer to be a single agent is a common modeling assumption. This assumption is also frequently 
employed in models focused on insurance demand (e.g., Birghila et al., 2022; Islam et al., 2022). 
An alternative format involves modeling an insurance market wherein a public entity assumes the 
role of providing insurance, as opposed to a private company. This approach is frequently 
employed in partial equilibrium and agent-based models, where multiple market forms are 
simulated and considered (e.g., Crick et al., 2018; Hudson et al., 2019; de Ruig et al. 2023). 

Another representation of the insurance sector is delineating the insurance component as a 
public-private market, wherein the government assumes the role of a risk-neutral reinsurance 
agent providing support to insurers (e.g., Perazzini et al., 2022; Hudson et al., 2019; Aerts and 
Botzen 2011) or a publicly organized insurance market in which a public agent provides insurance 
instead of a private company (e.g., Crick et al., 2018; de Ruig et al., 2023). 

Certain models offer an evaluation of the effectiveness of diverse insurance structures, spanning 
from private to public configurations. Hudson et al. (2019) evaluated six different insurance 
systems in the EU on their ability to cope with trends in flood risk and found that introducing 
elements of public–private partnerships can improve the affordability of insurance. In a study 
conducted by Unterberger et al. (2019), three distinct insurance systems are analyzed with regard 
to their fiscal impact on forthcoming governmental budgets and the associated variability in 
disbursements for public infrastructure insurance. As another example, Kunreuther et al. (2013) 
differentiated between hard and soft insurance market conditions to evaluate how the supply 
system for hurricane insurance behaves under these different conditions. In a similar fashion, 
Tesselaar et al. (2020a) analyzed the effect of climate change on premiums, affordability, and 
insurance uptake in soft and hard reinsurance conditions.  

A select number of models integrate the consideration of insurer competition, each employing 
distinctive methodologies in their approach. One model type that is well suited for modeling 
competition is the game-theoretic model type. For example, Guo et al. (2022) simulated multiple 



  D1.2 Advancements in actuarial risk modeling 
 

26 

insurers that participate in a perfect information Cournot–Nash noncooperative game to calculate 
the premium. Another way in which competition is considered is by assuming Bertrand 
competition among the insurers. This is done by omitting a premium profit margin (e.g., Hudson 
et al., 2019; Tesselaar et al., 2022; Tesselaar et al., 2020a; Kalfin et al., 2022), indicating that the 
insurers cannot earn a high profit due to the market being competitive. A general observation is 
that none of the reviewed ABMs explicitly model competition among insurers. Most ABMs either 
use a public insurance agent (de Ruig et al., 2022, 2023) or assume only one insurer in the model 
(Crick et al., 2018; Dubbelboer et al., 2017; Jenkins et al., 2017). Tanaka et al. (2022) employed 
an ABM that does not include an insurer as agent but uses a given insurance premium. 

4.3.3  Premium calculation 
Insurance premiums are often computed using various methodologies such as a solidarity system 
or capped premiums via a public-private partnership. However, the most prevalent approach is 
the usage of risk-based premiums. This type of premium is designed to mirror the inherent risk 
associated with the insured entity. The utilization of risk-based premiums holds significance, as it 
facilitates alignment between premium revenue and projected indemnity disbursements, thereby 
contributing to the financial viability of an insurance scheme. Furthermore, the deployment of risk-
based premiums serves as a means to convey information pertaining to risk, as evidenced by the 
studies conducted by Botzen and van den Bergh (2009) and Kousky and Kunreuther (2013). 
Additionally, these premiums can serve as a mechanism to incentivize the implementation of DRR 
measures, as elucidated by Botzen and Van Den Bergh (2009).  

Examples of models that use risk-based premiums for wildfires can be found in the study by 
Sacchelli et al. (2018). Examples of models that use risk-based premiums for hurricanes are those 
by Kunreuther et al. (2013) and Walker et al. (2016). Alternative methods for computing insurance 
premiums include the application of the distortion premium principle, as proposed by Birghila et 
al. (2022). Another approach involves representing the premium as a random variable, a concept 
explored by Sidi et al. (2017). Additionally, a quantile-based methodology, as outlined by 
Ermolieva et al. (2017), offers an alternative perspective on premium calculation. In some models, 
premiums are determined via aggregated risk in a solidarity market (e.g., Hudson et al., 2019; 
Tesselaar et al., 2020b). 

Studies addressing multiple insurance supply systems frequently employ diverse methodologies 
in premium calculation. An illustration of this multifaceted approach is evident in the work of 
Hudson et al. (2019), where premiums are determined through various models. These models 
encompass scenarios where premiums are unrelated to risk, fully risk-based, or risk-based with 
an imposed cap. A similar instance is illustrated in the research conducted by de Ruig et al. (2022), 
where the determination of premiums varies across several approaches. These include premium 
calculations based on outdated risk maps, fully risk-based assessments, computations grounded 
in updated risk maps following a flood event, and premiums derived from periodically updated risk 
maps. The adoption of diverse premium calculation methods proves to be a valuable strategy, 
facilitating comparisons among distinct market types or risk assessment methodologies. This 
comprehensive approach contributes to novel insights within the field of climate risk insurance 
modeling. As an example, by performing a multi-criteria analysis on different insurance market 
types, Hudson et al. (2019) found that a public–private partnership system can reduce the 
unaffordability of insurance by performing a multi-criteria analysis on different insurance market 
types.  
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5 Results of stakeholder analysis 
The elements of the conceptual framework served as the initial structure around which the results 
have been organized. This section consists of three parts. First, it begins by outlining the context 
of climate risk assessments within the EU insurance industry. Second, uncovered uncertainties 
and challenges are highlighted. Last, potential innovation opportunities that emerged from the 
stakeholder interactions are elaborated upon. All the parts are paired with supporting quotes. 

5.1 Context setting 
This analysis begins by examining common insurance products relating to climate risk. Next, it 
explores how climate data is utilized. The analysis then extends to other model data inputs, 
including historical losses, projections, and socio-economic factors. Finally, the focus shifts to 
strategic insurance decision-making. 

5.1.1 Insurance products 
From the interviews, it became evident that climate risk assessments are mainly relevant for 
property-related impact and non-life insurance. One participant explains: “It's mostly related to 
Property and Casualty (P&C) business because natural perils have material or property related 

”impact.  Property risks encompass any type of physical damage. For instance, damage to 
buildings due to floods and earthquakes was mentioned in fifteen and eight interviews, respectively 
(out of sixteen interviewees). Interestingly, forest risks associated with storms and insect 
infestations were mentioned twice. 

Beyond property-related impact, business interruption emerged as a recurring theme in eleven 
interviews, highlighting its importance in insurance coverage for natural hazards: “We look into 
different things. The first one is the damage to buildings, damage to facilities, damage to machines. 
This is straightforward damage to our end customers. We are also looking into the impact on 
supply chains that have to do with business interruptions.” 

The interviews revealed a variation of clients, with participants offering full property coverage for 
commercial, public, and individual clients, only commercial clients, or commercial and public 
clients. One participant’s quote effectively summarizes the key applications of climate risk 
assessments in insurance products: “We use it for all property insurance, motor, and homes. Both 
residential, commercial, industrial, and agricultural. It covers buildings and their contents, but also 
business interruptions. We also use climate/natural hazard risk information with business lines that 
are exposed like marine and aviation transport and for engineering risks and construction risks.” 

5.1.2 Climate-related risk information 
Hazard 

Understanding the range of hazards is crucial for developing a comprehensive understanding of 
climate risk assessments. Figure 6 illustrates the frequency of hazards mentioned during the 
interviews. The numbers indicate the number of times each hazard was discussed in separate 
interviews. Flooding was mentioned in all but one interview, making it the most prevalent natural 
hazard. It became apparent that there are several types of floods that require specific modeling 
approaches due to varying root causes: “You have fluvial floods, which comes from rivers. Pluvial 
flood, which relates to precipitation risk. Storm surge, which is when the water level rises because 
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of wind. Then you have flash floods, which is a city problem. You can also have dam breaks and 
glacial outbursts.” 

After floods, windstorm risk was highlighted most frequently and emphasized by one participant 
as the largest risk in the Netherlands. Wildfire, hail, and earthquake risks were subsequently 
underscored. Interestingly, hail was often discussed in conjunction with both motor vehicle and 
greenhouse damage. 

 

Figure 6: Frequency of hazards mentioned 

 

Exposure 

The second element in the risk equation is exposure. Exposure refers to the value and risk profile 
of insured property. The discussions revealed that exposure data is used as an input to the models: 
“The model reads an input, which is a monetary input. This is your total exposure. It gives a 
distribution of the percentage of that exposure that is at risk, given different thresholds of 
probabilities.”  

The importance of understanding an insured property’s exposure and its future development is 
essential. Participants highlighted the value of enhancement techniques for improved exposure 
data comprehension, recognising that models perform better with better-calibrated data. 
Specifically, geocoding was mentioned three times: “Creating a modeling output goes with 
knowing where your risks are located, which is the geocoding. Information on the location of assets 
is intersected with what kind of perils they're exposed to. […] The better your geocoding and the 
better the information on the type of structure, the more accurate your model becomes.” 

Depending on the type of hazard, exposure data needs to be granular enough to determine the 
expected portion of the total limit an insurer is at risk with. 

Vulnerability 

Beyond exposure, vulnerability determines how the hazard translates into losses. The interaction 
of hazard and vulnerability yields a destruction rate as a fraction of the total value, which is then 
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applied to the exposure. Consequently, having a good understanding of both an area's 
vulnerability and the vulnerability of specific insured clients is crucial, as was highlighted in seven 
interviews. One participant illustrates: “A vulnerability function translates, for example, wind speed 

”or hailstone size into the mean damage ratio for a certain area or a postcode.  In another interview, 
this was elaborated upon: “The vulnerability model looks at your portfolio and how, for example, 

”a hailstone or a windstorm impacts a wooden structure versus a concrete structure.  

Risk models can incorporate data on certain protective measures in the built environment that 
reduce vulnerability if this information is provided by a broker or client. 

Climate data 

To model a potential loss distribution, the development of frequency and severity of a hazard needs 
to be well understood. Public data plays a vital role in hazard modeling, with openly available 
information from public entities and research institutes serving as the foundation. An important 
distinction needs to be made: “ term horizon weather data from different data -We have short

horizon. There are  time providers. But when we talk about climate change, it's a medium to long
different research institutions currently working on it. So that's why we get data at different levels. 
Sometimes it's from IPCC, so the international level. Sometimes we get the data from a local 

”institute in different geographies.  

Weather institute data appears to be a frequently utilized source to obtain short-term 
meteorological and hydrological data. In addition, eight participants mentioned how climate 
change data is gathered on various climate parameters through reports by the IPCC. Expertise is 
also leveraged through collaboration with research institutes and commercial entities, as one 
participant highlights: “Our science team works on models for climate change with universities in 
Europe, sometimes in the USA. Besides, we sometimes use data provided by commercial 
companies. […] Airbus, for example, is a good company. They produce satellite data. We can use 
this to see what, for example, the drought evolution is, pictured by soil moisture.” 

Acquiring satellite data is further streamlined as openly available for utilization: “They’ve created 
structured processes to download satellite data from free open-source satellites, like ESA and 
NASA Science. They've got a whole platform dedicated to quickly being able to download that 
data.”  

By combining data from public entities, research institutions, and commercial companies, insurers 
aim to build hazard models that reflect the evolving climate as accurately as possible. 

5.1.3 Other model data inputs 
Historical losses 

Analysing past events is crucial for understanding the frequency and severity of natural hazards. 
By incorporating and analysing historical claim data categorized by risk maps, insurers can build 
and validate model parameters that effectively predict potential loss distributions in the event of a 
natural disaster. One participant explains: “The company has recorded weather, climate, and 
hazard data and claims worldwide. I think it started in the 60s, so they have a detailed long-term 
history of data they can use for that.” 

Less frequent hazards require longer historical datasets for a more accurate understanding of the 
risk profile. While historical loss data provides a valuable foundation for natural disaster risk 
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modeling, climate change may cause past events to be less representative of current and future 
risks. To address this limitation, two participants address techniques like detrending to remove 
long-term trends from the data, isolating the present risk profile: “We detrend the climate data so 
that we know that we're looking at data that's now, and not taking into account maybe a less risky 
history.” 

Furthermore, the future is factored in. Another participant highlights: “Historical data is detrended 
based on scientific research. If you look for example at hurricane models, they are based on 
historical data, but they are updated every year based on the data, the context, and the weather 
conditions.” 

Forward-looking data 

Incorporating scientific forecasts and future projections of climate scenarios allows insurers to 
develop better forward-looking models. However, the interviews revealed an equally divided 
approach among participants regarding the use of these techniques. Forecasts, which extrapolate 
from historical data, offer a more predictive element, making them valuable for pricing purposes 
and short-term risk assessments. One participant explains: “Climate forecasts are based on the 
best understanding of what the situation is now and try to go forward with it. With the scenarios 
that the IPCC generates, which are different from forecasts, it can be a + 1,5 degrees world or a 
+4 degrees world. I would say in that sense, climate forecasts are the ones that influence the 
insurance industry more than the scenarios. […] because a forecast starts from the current 
situation and environment to show how it will evolve. Depending on what IPCC scenario proves 

”to be true, the basis of the forecast changes.  

Climate projections, on the other hand, are more often used when looking at long-term climate 
risks, particularly those concerning assets. These scenarios, which look twenty, thirty, or more 
years ahead, allow insurers to see how climate change will affect the risk in the longer run due to 
their ability to capture non-linear climate effects that might be more severe than a linear 
extrapolation of historical trends: “In my view, the projection models are more appropriate because 
with historical trends, it's always dangerous and difficult to extrapolate them into our future pattern. 
[…] I think with projections you've got a better understanding because we see that climate change 
is developing faster than what the historical trends might suggest.” 

The projections mostly seem to be based the Representative Concentration Pathways (RCPs), 
which were cited seven times: “We use different scenarios of the RCP. RCP 8.5 for the worst-case 
scenarios. We use the 4.5 as a benchmark. Sometimes we also use the optimistic 2.5, but we use 
that less often because our job, unfortunately, is to alert our client.” Another participant confirms: 
“Mostly if you are using RCP, you are using RCP 4.5 and 8.5. 2.6 is very optimistic and no one 
uses 6.0 that much. They say that 4.5 is most common, 8.5 is very pessimistic.” 

Nevertheless, eleven participants brought up that the non-life insurance contracts have a horizon 
of one year, which is why long-term projections are not top of the agenda of insurance companies. 
Short-term volatility is not driven by average annual warming. Instead, intra-annual fluctuations 
play a more significant role: “We are only talking about intra-annual variability that might be driven 
by whether next year is going to be an El Niño or a La Niña year, or in what mode the North Atlantic 
oscillation is. These are very different questions about climate. […] That huge volatility you see 
you on year are the things that insurers are interested in, more so than the background warming.” 
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Although forward-looking climate models are not yet widely integrated due to the short-term focus 
of many insurance products, these models hold significant potential for promoting DRR strategies 
and putting pressure on, for instance, governments. 

Socio-economic factors 

Although socio-economic factors were thought to be an input factor to the risk models, most 
participants excluded them entirely. Yet, one participant indicated the following: “We are using 
estimates of future climates under the assumptions of future human-related activities such as 
socioeconomic and technical development.” Nevertheless, socio-economic circumstances seem 
more of a consequence rather than an input, which depends on geographies, population, and the 
protection gap: “The impact of climate change is not distributed equally to people. I believe that 
the impact of vulnerable people is more important than the middle and upper class. This needs 
some actions from governments to not act and react too late. We need to understand that the 
impact to different countries and different populations are different.” 

5.1.4 Climate risk models 
Climate risk assessments are generally modeled through Natural Catastrophe (Nat Cat) models 
that incorporate hazard, vulnerability, and exposure data to generate event-loss tables using a 
stochastic approach. A participant highlights the complexity: “If you want to know the likelihood of 
your house and your neighbour’s house being impacted by the same flood event, then you need 
a refined stochastic model. This provides several scenarios of events that could happen, which 
allows for quantifying the aggregation of the risk coming from a certain pattern.” 

Furthermore, Monte Carlo simulations are used to model a wide range of potential natural 
disasters or other insured events. This results in a probability distribution for hazard frequency and 
severity, in which inherent uncertainties are included. Nat Cat models are further highlighted by 
seven participants in informing both solvency requirements and reinsurance strategies for 
insurers. They focus on high-impact, low-frequency tail events that uses one in 100-, 200-, or 
1000-year scenarios. These tail events are particularly relevant for solvency calculations under 
Solvency II regulations: “We use a 1-in-200-year scenario, as it is important for Solvency II. 
Solvency II is the requirement for the solvency calculations for insurers in the EU. […] For every 
risk type, there is a formula. Then you can add it together to get the total capital requirement, the 
Solvency II capital requirement.” Another participant confirms: “We are using it for our solvency 
internal model. When we want to run our model for Solvency II, we need the 99,5-percentage 
quantile. You need something that's rather robust at exactly this quantile.” 

Twelve participants confirm they (partly) rely on external vendors and reinsurers for Nat Cat 
models, leveraging their expertise of the hazard and vulnerability component, and translating 
exposure into economic risk distributions: “We make use of models developed by model vendors. 
We get the information from the reinsurance brokers. They run the models to be able to negotiate 
with the reinsurers and advise us on the reinsurance program, but we can also use these models 

”for internal risk management purposes.  

Although the external models may lack transparency due to their proprietary nature, developing 
models in-house would require significant expertise, time, and financial resources. Instead, 
insurers aim to gain a thorough understanding of the model’s methodology through testing and 
validation in which their expertise and experience is leveraged: “We do investigations on those 
external models. We are using a scorecard with all different types of tests we do on those third-
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party models. […] We validate the methodology that they used especially relating how fast climate 
shocks are translated to economic impact. Then we read the report, we check it for plausibility, 
we reference it to other reports that we know of. Sometimes you need to adjust for opinions or 

”methodologies.  

In two instances, catastrophe models were noted as inputs for actuarial calculations. For specific 
risks where external vendor models are unavailable, such as floods in certain regions, insurers 
may choose to develop their own actuarial models in-house: “Mainly we work with third-party 
vendor models. But that's not the case for flood risk. […] For flood risk, we have made a model 
that's built on our own account using the different advisory companies in the Netherlands. ] …[
There's no external flood model available, but we've seen it as an important material risk, so we've 

”.created a model ourselves  

In contrast, four participants offer parametric insurance solutions. Parametric insurance 
specifically targets acute natural perils, as chronic perils are challenging to insure parametrically 
due to their extended duration. Unlike Nat Cat models, parametric models focus solely on the 
hazard itself, triggering pay-outs based on pre-defined parameters: “In parametric insurance, you 
negotiate the terms, the parameters, of the event very precisely. You set space, you set the time, 
and you set a certain metric. For example, if an earthquake happens in the 100-kilometer area 
around the centre of Zurich and this earthquake is more than 6 on Richter, then the insurance 
policy is triggered and you get immediate pay-out based on the agreed-upon value, but if the 
magnitude is 5.9, you get nothing.” Naturally, this type of insurance requires very good knowledge 
of the natural perils which is leveraged through different data sources including weather stations, 
drones, and satellite images, so that claims can be released quickly. 

5.1.5 Insurance decision-making 
Risk models generate probability distributions of potential financial losses, which then serve as 
inputs for underwriters when determining policy pricing: “Based on hazard, vulnerability, and 
exposure, you make a loss model that is taken for pricing. Then you have a technical price, which 
tells you the minimum price that we're willing to sell this insurance for. Then people called 

”underwriters take it. They negotiate with the client to get the final price.  

Climate change, however, introduces significant uncertainties, potentially necessitating premium 
increases in regions experiencing uncharacteristically high losses for events that might fall outside 
the current models. On the other hand, as mentioned before, most non-life insurance products 
have a duration of one year, which limits the application of long-term climate effects in pricing. 
Climate change is very gradual, and insurers are only interested in how climate change is going 
to affect the coming year: “I don't know how much climate modeling is necessary when it’s one-
year policies. You want to isolate what's going to happen this year. You don't care what's going to 
happen 2030.” 

While long-term climate effects are not critical for pricing due to their one-year nature, the contrary 
seems true for strategic considerations. Besides solvency and reinsurance, six participants 
recognise the increasing influence of climate change on investment decisions, such as bonds, 
equity shares in companies, or real estate: “We have an asset portfolio consisting of government 
bonds, equity shares, bonds from companies, real estate, and mortgages. Those are worldwide 
and we analyse it on two levels. First, on a granular level top down. We look at how our portfolio 
is roughly distributed around the world and what the climate risks are to GDP and so on; […] we 
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analyse the companies we invest in. In that analysis, we use a climate analysis for the specific 
asset to assess how much material risk it has.” 

Since some investment portfolios hold assets for decades, a long-term strategy that incorporates 
climate considerations is required, since these assets are exposed to potential climate risks over 
their lifetimes. One participant elaborates on their strategy: “We have a best-in-class strategy 
where companies that do well in climate risk reduction are preferred over companies that not do 
as well, and the bad ones we don't want to invest in. We’re hoping that by doing this, we limit our 
climate risks and have more of an impact.” 

Although climate risk reduction is reflected in the vulnerability component of the risk model, it is 
not directly used as an input in the model. Nevertheless, four participants highlighted that they 
inform clients of measures that could reduce their risk of specific natural perils: “We can show 
clients: this is your flood risk today, this is how it would look in 2030, and this is how it would look 
in 2050. Those assessments are passed on to the risk consulting department. They are the ones 
who best advise the client what they could do, what measures they could take to reduce the risk.” 

One interviewee emphasized the challenge of long-term planning for climate risk reduction 
considering frequent leadership changes among boards, CEOs, and ministers. 

5.2 Uncertainties and challenges 
Uncovering the main uncertainties and challenges of climate risk assessments is crucial to this 
study. Ten distinct categories emerged from the interviews. Figure 7 summarizes the codes for 
"uncertainties and challenges," highlighting their frequency (left vertical axis, bar chart) and the 
number of interviews where each challenge was discussed (right vertical axis, line chart). The 
relative percentage indicates the proportion of each challenge code within the total "uncertainties 
and challenges" category. It suggests a correlation between the frequency of a challenge and the 
number of interviews it arose. Notably, “Nonlinear Environmental Changes” is the most evident 
challenge. Participants noted that there are uncertainties that come from climate evolution that 
we are not aware of because the whole system is changing. The nonlinear nature of these 
changes, with potential tipping points and unforeseen triggers, significantly complicates future 
climate modeling: “These effects are nonlinear and kind of increase. Small errors at the very 
beginning increase in size and become huge errors in and like in 30-40-50 years projections.” 

Three participants continue to address the interaction between tipping points of biodiversity and 
climatic perils, highlighting its uncertainty: “The escalation that will be caused by lack of 
biodiversity through climate change and global tipping points, those are the big climate events 
that make a difference in what the result will be. […] The tricky part of is that you don't have a 
history of how a change in biodiversity will trigger natural catastrophes. That's a completely new 
scenario. You have to model it somehow with a very high uncertainty.” 

The primary challenge associated with nonlinear environmental change lies in modeling such 
unforeseen scenarios. As one participant pointed out: “There's way more that we don't know than 
we know. Despite all our attempts to capture this in the most sophisticated climatologist models.” 

This argument is supported by “Assumptions and Parameter Validation” being the second largest 
challenge. From hazard to exposure to vulnerability to loss, the uncertainty compounds if any 
previous assumptions are incorrect. Wrong assumptions can therefore corrupt the entire model, 
highlighting the need to validate parameters against other models, historical data, and scientific 
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literature. An example of flood risk modeling illustrates its complexity: “The elevation of the riverbed 
is a big assumption in the model. There's very little validation data for these tools because we don't 
have enough observations of real flood events measured to any useful degree of accuracy for us 
to compare the model representation of these floods to an observed reality, which makes it hard 
for us to understand if anything that we're doing is any good ultimately.” 

Two participants further emphasized the need for geographically specific models due to 
“Geographical Risk Differences” across regions. This necessitates global data, as the impact of a 
hazard can differ significantly depending on location. 

“Economic Uncertainties” include capturing future inflation impacting labour and construction 
costs or material shortages that could drive up prices, which leads to concerns about the future 
insurability. Seven participants expressed concern about the ability to set high enough premiums 
to cover potential risks: “The real issue is that at some point, even with the tools we have, we start 
realizing that the price that we have is not sufficient. It is not just a matter of calculating what your 
expected loss is, it is also a matter of making sure you can charge that amount to your customer. 
I see the effect of climate change being a larger threat to the market dynamics than being a threat 
as a shock for the industry because I think the shock component is considered in the modeling 
already. But the inability to place your cover in the market and to find the customers is what is 
going to cause a bit of an impact on society. It becomes a market failure more than a failure on 
the modeling side.” 

Translating damages into an economic effect is where there is a “Disconnect”, according to six 
participants. Several issues come to light. First, a gap exists between academia's recent 
recognition of climate risks in insurance and the industry's decades-long experience managing 
these risks. In addition, meteorological institutes' risk assessments may not align with the specific 
measures needed by the insurance industry. Finally, actuaries responsible for pricing may lack the 
expertise to integrate climate scenarios, such as those provided by the IPCC, into their models. 

Furthermore, “No Detailed Exposure and Vulnerability Data” seems to be a prevalent concern, as 
information is often wrong or lacking. Property details, such as exact location, type of structure, 
height, and materials are essential to assess a risk. Similarly, “Terrain Mapping” data on the form 
of the landscape and defences such as flood protection measures are fundamental: “You need to 
know not only the height of the building but also the material of the building. Depending on if your 
property is on top of the hill or if you are at the bottom of a mountain, the water has a different 
speed. To know this, you need a meteorologist and engineering, with that science you can build 
something more intelligent.” 

Beyond data gaps, the additional concern of “Closed Off Data” due to restrictions by vendor 
companies or governments was highlighted, with three participants advocating for more 
transparency. Uncertainty of “Regulation” regarding climate change adds another layer of 
complexity. Four participants expressed concern about the lack of clear government action in 
response to rising climate costs. One participant proposed a role for academia in guiding 
governments towards public-private partnerships. Additionally, three participants emphasized the 
uncertainty surrounding “Future Climate Adaptation” measures and the level of international 
cooperation. 
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Figure 7: Uncertainties and challenges overview 

 

The focused discussion highlighted some broad perceived uncertainties that may influence the 
accuracy of natural disaster risk modelling. The largest number of participants (sixteen) 
highlighted uncertainties around future climate change conditions as the key challenge. This is in 
line with the frequency that the specific uncertainty relating to climate change elicited from the 
interviews was mentioned, i.e. the nonlinear nature of this change, and therefore unforeseen future 
climate conditions. Less participants selected limited past data availability (eleven) and 
uncertainties about future population and economic growth (nine) as key challenges, which is also 
generally consistent with how often related uncertainties were mentioned in the interviews. 
Thirteen participants highlighted uncertainties about how to include adaptation dynamics. 
Therefore, this point received a higher focus in the discussion, compared to the interviews. 
Participants highlighted the feedbacks that may occur between vulnerability, hazard experience 
and adaptation behaviour, as well as the role that social sciences could play in assessing 
adaptation behaviour over time for facilitating more accurate natural disaster risk modelling. It was 
also mentioned that adaptation is often included statically across time using protected versus 
unprotected hazard maps. 

5.3 Innovation potential 
Ten areas for innovation potential were uncovered. Figure 8 represents a similar graph as seen 
before for uncertainties and challenges. Correlation between the frequency an innovation 
emerged and the number of interviews they were mentioned seems, however, less prevalent. 

“Parameter Improvements” within the model is where most improvements could be made. This 
innovation addresses the second largest challenge “Assumptions and Parameter Validation”. One 
participant pointed out that climate-related parameters are currently hard-coded in the model. 
However, they should be adjustable to changing conditions to form scenarios on, for instance, 
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future biodiversity or tipping points. An improved understanding of the perils through more 
research is discussed as a solution, in line with the third most frequently mentioned innovation 
“Improved Environmental Understanding”: “Only as research gets better and discovers new things 
and improves our understanding of the perils, it will slowly get added into the models.” 

An improved understanding of natural phenomena could be directly incorporated into models, 
leading to better projections. New insights, for instance, the projected impact of a 3.5-degree 
temperature rise on storms and floods, would enable adjustments in these projections. One 
participant contested this view, arguing that the focus should be on evolving how models are built, 
not just on climate research. Another participant agrees, advocating for the creation of more 
models to ultimately achieve marginal improvements through model convergence: “You simply 
need as many people as possible creating these models, so it’s easier to do the validation. Over 
time things are going to converge towards some optimal solution that everyone kind of agrees is 
the best way to do it. The uncertainty will decrease as more people create these models, especially 
global models. […] Per solution, we have a better solution in the future and the sooner we reach 
it, the better. For that, we need brain power, funding for model building, and more companies 
building their own models.” 

On the other hand, through the code “Model Sufficiency”, positive and constructive sentiments 
about the current models were noted. Participants mentioned they are “getting more sophisticated 
with a higher resolution” and “very advanced”. It was pointed out that nonlinear models are never 
perfect while acknowledging the potential added value of combined risk and tipping point 
modeling. Yet, eleven participants expressed reasonable confidence in current models for 
informing climate policy and balance sheet analysis: “I think the models are great. However, I think 
that all models are wrong, some models are useful. As long as we keep thinking and challenging 
what we see coming out of the models and look at what possible scenarios there are, we can at 
least try to define the grey swans. Black swans, those are out there. We simply don't know and 
that's why they are called black swans.” 

The key challenge lies in the quality of data feeding the models. Two areas were identified for 
improvement: "Land and Water Flow Data," and "Higher Granularity," These categories address 
the challenge “Terrain Mapping” from different angles. Floods were a particular concern, 
highlighting the need for more detailed data on landscape shape and property characteristics: 
“We need models that can see not only the extent and the depths of a future flood in an area but 
also the flow dynamics. For example, how fast the water will be, or how long a building will drown 
in the water. Therefore, strong meteorological knowledge is needed and combined with building 
engineering deep learning.” 

Additionally, landslides, hailstorms, and windstorms are emphasized to require specific data to 
predict how local exposures are affected. Currently, most models need downscaling to obtain a 
higher granularity. Yet, the more detail you can get on a granular level, so far as the model 
becomes robust, the more accepted it is. Radar-based satellite data was mentioned to offer a 
promising solution. By providing more precise elevation data, it can predict water flow patterns, 
potential pooling areas, and flood damage to buildings and infrastructure. Additionally, LiDAR 
technology, which uses laser measurements from airplanes to map ground surfaces, was 
mentioned as a significant innovation. Also “AI” applications in model building and downscaling 
emerged in three interviews, claiming that AI is “quite strong in modeling nonlinear effects when 
it’s benchmarked  ”.against experience and expertise from physicists and meteorologists  



  D1.2 Advancements in actuarial risk modeling 
 

37 

An expert in flood mapping highlighted the importance of freely available, state-of-the-art elevation 
data in model development, which introduces a “Data Sharing Ecosystem” as an innovation. This 
ecosystem would address the challenge of "Closed-Off Data" by promoting the open sharing of 
valuable data, including satellite imagery and climate change knowledge while increasing 
transparency and dialogue. The concept involves breaking down data silos and establishing a 
common data-sharing platform. One participant shares his view: “The idea is to create an 
ecosystem because everyone is strong in their domain of expertise. This infrastructure can be 
created with two things. The first one is the collaboration of different key actors in different in 
industries. The second one will be the support from European governments to create a working 

”group so that people can work together.  

Relating to the challenge of “No Detailed Exposure and Vulnerability Data”, acquiring that data 
would significantly improve loss estimations. While acquiring data on building characteristics and 
protective measures is technically possible, the sheer volume of individual properties across 
Europe makes comprehensive data collection impractical. To address this challenge, one 
participant proposed the creation of a standardized European index cataloguing all structures. 
Additionally, the potential role of AI in identifying flood defences and building structures was noted. 

Lastly, three participants displayed a clear consensus on the urgent need to address climate 
change and arrive at a consensus on how the industry should position itself. “Public-Private 
Collaboration” could aid by mobilizing broader public support for climate change mitigation and 
DRR initiatives as this is not a topic that can be solved by the industry alone. Additionally, two 
participants emphasized the need for governments to establish effective regulatory frameworks 
for the insurance sector. These frameworks should promote financial resilience within the industry 
while ensuring that insurance remains accessible and affordable for policyholders: “You need to 
have a public-private cooperation. It needs to be a market solution that needs regulation from the 
government. Then there is a much broader set of people that are needed to find a solution that 
works. Academia can play a role here.” 

 

Figure 8: Innovation potential overview 
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The focused discussion further highlighted some general methodological innovations that are 
needed to advance natural disaster risk modelling. Specifically, the largest frequency of 
participants selected new or better methods of including multi-hazard risk (seventeen) and 
adaptation dynamics (sixteen). This is generally in line with the interview results that places a high 
focus on parameter improvements, which may be achieved via improved understanding of perils, 
adaptation dynamics and the interrelationships between perils in a multi-hazard risk environment. 
The discussion emphasized the importance of multi-hazard risk and compounding events in the 
context of adaptation. That is, modeling innovations need to account for the fact that individuals 
often need to adapt to multiple perils in one location. The occurrence of single hazards can trigger 
other hazards and cascading effects, resulting in more severe consequences than the sum of the 
impacts of individual hazard occurrences. Furthermore, less participants selected addressing 
model uncertainty (eight) and more refined risk maps (eleven times). The aforementioned 
interview findings highlight specific points related to the latter issue on a specific data need, e.g. 
on the types of data, granularity and data sharing. 

 

6 Discussion of literature review 

6.1 State of the art and directions for future research 
Climate risk insurance models can be subdivided into two components: the risk module and the 
insurance module. The shape of these components generally depends on the model type, the 
climatic hazard, and the application of the model. In terms of model type, we distinguish three 
primary categories: insurance supply models, partial equilibrium models, and agent-based 
models.  

Insurance supply models are useful for premium calculations, which may include premium 
development over time under different socioeconomic development and climate change scenarios 
(e.g., Aerts and Botzen, 2011; Boudreault et al., 2020). However, most supply models are not 
forward-looking (e.g., Boudreault & Ojeda, 2022; Brunette et al., 2015; El-Adaway, 2012; 
Sacchelli et al., 2018). Partial equilibrium models allow for analyzing the interplay between 
insurance supply and demand. This makes partial equilibrium models useful for insurance market 
type assessments (e.g., Hudson et al., 2019) or for investigating inquiries pertaining to the 
affordability and uptake of insurance (e.g., Tesselaar et al., 2022; Tesselaar et al., 2020b). Agent-
based models allow for the simulation of complex agent behavior. This is useful for analyzing 
decisions that reduce climate risk (e.g., de Ruig et al., 2022; Dubbelboer et al., 2017; Jenkins et 
al., 2017). 

The risk component of a model estimates the risk used to calculate an insurance premium. This 
component can -with one exception in the reviewed papers, (Brunette et al., 2017)- be divided 
into catastrophe models and actuarial models. Most of the reviewed papers estimate risk using a 
catastrophe model. A catastrophe model simulates the risk based on hypothetical events and is, 
hence, useful for estimating the risk of low-probability high-impact events such as flooding. On the 
other hand, actuarial models use loss data about actual events to estimate the risk. Therefore, the 
actuarial approach tends to be more applicable to hazards that happen more commonly such as 
windstorms.  
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The insurance component of the model translates the risk into an insurance application. While 
most papers focus on household insurance, it is worth noting that forestry insurance modeling is 
also a well-established and developed field (e.g., Barreal et al., 2014; Brunette et al., 2017; Loisel 
et al., 2020; Sacchelli et al., 2018). Multiple papers include a modeled insurer, often in agent-
based models (e.g., de Ruig et al., 2023; Dubbelboer et al., 2017; Jenkins et al., 2017), partial 
equilibrium models (e.g., Hudson et al., 2019; Tesselaar et al., 2020b), or game-theoretic models 
(e.g., Kesete et al., 2014; Peng et al., 2014). The premium calculation predominantly follows a 
risk-based approach, wherein the premium is designed to mirror the level of risk inherent to the 
insured entity. The usage of risk-based premiums is common for climate risk insurance. 

More than half of the papers about climate risk insurance models capture flood hazards. This 
means that the other climatic hazards are relatively underrepresented in the literature. Insurance 
for climatic hazards such as drought and windstorm damage tends to be relatively understudied 
in comparison to flooding. This is despite windstorms accounting for a substantial 40% of the total 
losses attributed to climate-related events, while flooding constitutes 25% (Hoeppe, 2016). The 
disproportionate attention to flood-related research compared to the distribution of overall losses 
highlights an imbalance in the focus on various climatic perils. 

Another key research gap is the application of climate risk insurance models to underdeveloped 
countries. Of the models considered, only a small subset is applied to Asia, and none of the models 
are applied to locations in Africa or South America. A potential reason for this is the lack of 
available data. However, since these areas are relatively more vulnerable to climatic hazards than 
most developed areas (IPCC, 2023), insurance and, therefore, insurance modeling are relevant 
there. Utilizing remote-sensing techniques to assess the risk for insurance purposes (Islam et al., 
2022) can potentially prove useful in locations where data collection is difficult. 

A small subset of models concerns insurance for the commercial sector, of this small subset all 
papers considered only agribusinesses, except for Ermolieva et al. (2017). However, the 
commercial sector also experiences substantial damage from climatic hazards due to direct 
impact and business interruptions as a consequence of these direct impacts. Business 
interruptions can have significant and widespread consequences, potentially resulting in 
outcomes such as unemployment and product shortages (Koks et al., 2019; Sultana et al., 2018; 
Taguchi et al., 2022). Therefore, amidst a shifting climate, it is imperative to assess the feasibility 
and resilience of climate risk insurance for businesses. Achieving this goal will necessitate 
increased modeling efforts within this domain. 

A significant research gap exists in the observation that merely half of the climate risk insurance 
models can be categorized as forward-looking. This implies that only half of these models integrate 
future scenarios to evaluate insurance mechanisms in the context of a changing climate and 
evolving socioeconomic development scenarios. Evaluating risk based on the experience from 
past events is no longer sufficient to capture the uncertainties around future risks (Adger et al., 
2018). Future premium setting is impeded by the uncertainty around climate change (Botzen, 
2021). This calls for a thorough forward-looking approach to climate risk insurance setting, which 
is currently not happening enough, indicating a research gap. This gap is evident for both the 
inclusion of climate change scenarios, such as RCP scenarios, and the inclusion of socioeconomic 
development scenarios, such as SSP scenarios. Furthermore, not all papers that are categorized 
as forward-looking include multiple scenarios. Utilizing multiple scenarios enables a more 
comprehensive capture of the uncertainties associated with the future.  
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Furthermore, wildfire and windstorm insurance models do not include DRR (but see Barreal et al. 
(2014)). Even though DRR for these perils does exist (Manocha & Babovic, 2017; Paveglio et al., 
2018), the incorporation of DRR into insurance models for these climatic hazards remains limited. 
Consequently, there is a potential avenue for enhancing the robustness of insurance models by 
integrating DRR elements specific to wildfire and windstorm risks. 

Another gap is the limited attention to multi-hazard modeling. Multi-hazard risk modeling is an 
emerging field that poses a more thorough approach to risk management than traditional methods 
(Stalhandske et al., 2023; Tilloy et al., 2019). Multi-hazard modeling is especially relevant in the 
context of compound hazards, which largely exacerbate the potential damages. Currently, there 
is a small number of papers that specifically consider multi-risk premiums, and they either consider 
forestry insurance policies (Brunette et al., 2015; Sacchelli et al., 2018) or household insurance 
against earthquakes and flooding (Perazzini et al., 2022).  

6.2 Policy recommendations 
Most forward-looking models indicate that climate change and socioeconomic developments 
highly exacerbate future risk and, hence, lead to increased insurance premiums (Boudreault et 
al., 2020; Crick et al., 2018; Dubbelboer et al., 2017; Hudson et al., 2016; Jenkins et al., 2017; 
Kunreuther et al., 2013; Tesselaar et al., 2020a, 2020b, 2022; Unterberger et al., 2019). This 
suggests that taking climate change and socioeconomic developments into account in insurance 
models is imperative in assessing the long-term viability of insurance. However, uncertainty about 
future risks gives some insurers an incentive to charge higher surcharges on insurance premiums 
and restrict coverage for extreme weather events (Botzen, 2021). Applying a stochastic approach 
rather than a deterministic approach in climate risk assessment (Walker et al., 2016) and taking 
the ambiguity between different climate models into account (Birghila et al., 2022) are methods to 
deal with this uncertainty. 

Multiple papers advocate for the implementation of risk-based premiums in natural disaster 
insurance schemes because they are useful for incentivizing DRR efforts (Brunette et al., 2017; 
de Ruig et al., 2022, 2023; Dubbelboer et al., 2017; Hudson et al., 2016, 2019; Jenkins et al., 
2017; Unterberger et al., 2019). For instance, risk-based premiums may act as a price signal that 
raises awareness among policyholders of the climate risks they face. Moreover, rewarding 
policyholders who make their properties resistant to the impacts of extreme weather with premium 
discounts gives them a financial incentive for taking DRR measures against climate risks. 
Incentivizing DRR is also a recommendation given in a joint discussion paper by the European 
Central Bank (ECB) and the European Insurance and Occupational Pensions Agency (EIOPA; 
ECB & EIOPA, 2023). However, it is also important to consider the affordability of insurance, as 
fully risk-based premiums might lead to unaffordability and, hence, a reduced uptake among low-
income households in areas with a high natural disaster risk (Tesselaar et al. 2020b; Unterberger 
et al., 2019). A potential policy solution for this unaffordability might be the usage of a voucher 
scheme, which alleviates the share of the insurance premium that is considered unaffordable. 
Another option is to consider public-private partnerships or making use of a semi-voluntary 
structure which makes insurance mandatory to acquire a mortgage for example.  

Furthermore, to address increasing climate risk and keep insurance schemes viable, a proactive 
involvement of the government in the insurance market has been proposed through the 
establishment of public–private partnerships (Hudson et al., 2019; Tesselaar et al., 2020a, 
2020b). In such an approach, the government strives to reach a balance between ensuring the 
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financial viability of insurance companies and keeping premiums affordable for the general public. 
Another example of this can be found in the model used by Crick et al. (2018), Jenkins et al. 
(2017), and Dubbelboer et al. (2017), which actively examined improvements in the U.K. public–
private partnership FloodRe. The government can also be involved by means of enforcing 
insurance uptake, thereby increasing the pool of policyholders. Pinheiro & Ribeiro (2013) and 
Tesselaar et al. (2020a) suggested that the mandatory uptake of insurance can lead to higher 
resilience, the former for forestry businesses concerning wildfire hazard and the latter for 
households concerning flood hazard. Mandatory uptake leads to the possibility of spreading the 
risk across more policyholders, leading to lower premiums and a lower protection gap.  

Lastly, multiple studies suggest that developing insurance products that cover multiple climate 
risks can be attractive for enhancing insurance coverage for climate risks (Brunette et al., 2015; 
Hudson et al., 2019; Perazzini et al., 2022; Sacchelli et al., 2018). This would require a move from 
single- to multi-hazard climate risk assessments in insurance modeling. Combining multiple 
hazards under a single insurance policy has been observed to necessitate a lower amount of 
capital compared to insuring each hazard individually due to risk diversification (Perazzini et al., 
2022).  

All these recommendations require close collaboration among stakeholders at different levels 
(e.g., ECB & EIOPA, 2023). Birghila et al. (2022), Crick et al. (2018), Hudson et al. (2016), and 
Sidi et al. (2017) emphasized the importance of involving diverse stakeholders (e.g., government, 
other private partners) to create a more nuanced, effective, and transparent risk management 
framework. Collaboration between all stakeholders involved can limit uncertainty. Specifically, 
collaboration between the insurance and public sectors is often crucial (Kunreuther, 2018). An 
example is a clear communication of the government about post-disaster compensation to limit 
the crowding out of demand for private insurance, also called charity hazard (Tesselaar et al., 
2022). Furthermore, due to the inherent complexity of insurance products, collaboration between 
insurers and government stakeholders not only widens the spectrum of perspectives but also 
enhances the adaptability of insurance strategies to different challenges. Examples are combining 
private insurance coverage with public measures that limit climate risk and introducing public–
private insurance coverage when premiums otherwise rise to unaffordable levels. 

 

7 Discussion of stakeholder analysis 
This study makes two important contributions. First, it identifies challenges and opportunities to 
improve climate risk assessment through innovation. Second, its findings inform policy implications 
for the insurance industry, academia, and governments. 

7.1 Bridging the gap to innovation 
By analysing and connecting the main challenges and innovation potentials identified through 
stakeholder analysis, we can pinpoint the most promising areas for advancing climate risk 
assessment practices. First, the uncertainty that follows from nonlinear environmental changes, 
such as triggers and tipping points, requires improved environmental understanding for them to 
be accounted for in the models. In accordance with the responses of participants, Jarzabkowski 
et al. (2019) confirm insurance policies are a reactive product designed around short-term 
protection with an annual life cycle that is not directly linked to longer-term climate change. The 
IMF supports the statement that climate change’s physical risks extend beyond typical risk 
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analysis horizons and that there is sizeable uncertainty in climate risk modeling due to the many 
pathways for future emissions and temperatures (Adrian et al., 2022). The stakeholder analysis 
revealed that improved environmental understanding is necessary for more accurate hazard 
projections. To address this, Zscheischler et al., (2018) advocate for a refocused approach, in 
which research should consider a climate-related hazard as a combination of multiple factors, 
rather than a single event. This approach could offer a deeper understanding of the underlying 
physical processes, ultimately guiding the development of more accurate climate models and, 
hence, better risk assessments. 

Second, assumptions and parameter validation and their improvement reveal a top area where 
advancements can be achieved. As one participant explained, this requires changing from hard-
coded climatic factors in models to adjustable ones. Participants further suggested creating a 
larger pool of alternative models for robust comparison and validation. Molinari et al. (2019) 
support these insights by identifying effective validation techniques such as comparing model 
results with observed data, benchmarking with other models in the same area, and leveraging 
expert knowledge. The need for higher-quality data to perform validation and benchmarking was 
a recurring topic. This could be addressed using varied data sources including historical weather 
data, satellite imagery, and climate projections. In addition, participants highlighted the potential 
of AI in model building through downscaling complex geographical data, using deep learning 
methods that can handle high-dimensional data, and recognising patterns between relationships, 
which aligns with findings from Lin et al. (2023). 

Third, a big concern seemed to be a lack of exposure and vulnerability data of the insured 
portfolios. While the need of improving such data emerged in nine out of sixteen interviews, the 
question remains how to accomplish this. Participants emphasized that, in many cases, detailed 
records of building characteristics are missing. Therefore, updated tools are needed to monitor 
financial solvency, as the number of exposures in hazard-prone areas is growing (Nicholson, 
2019). The interviews identified AI as a solution for vulnerability assessments by identifying building 
structures and flood defences. Combined with blockchain and the Internet of Things (IoT), AI 
unlocks further possibilities for insurers, as it could deliver secure, real-time data collection and 
remote monitoring, leading to more accurate risk assessments (Tinianow, 2019). While blockchain 
was not explicitly mentioned during the discussions, LiDAR technology was addressed as a 
promising solution for ground surface mapping by one of the participants. Pinelli et al. (2020) 
support this, highlighting machine learning combined with LiDAR or drones to produce reliable 
and complete exposure datasets. Additionally, Stone (2017) suggests a combined approach of 
omnidirectional imagery collection (e.g. Google Street View) with virtual surveying methodology 
to collect building data. Yet, this method was not discussed in the stakeholder analysis. 

Fourth, as became evident in the results, physical risk exposure is highly location-specific, which 
is why there is a need for high-resolution climate models (Adrian et al., 2022; Zscheischler et al., 
2018). The stakeholder analysis indicated the need for improved terrain mapping, stressing 
expertise in water flow dynamics and knowledge of the geological makeup of the insured 
property’s surrounding land. Gathering of high-quality field data therefore requires improvement, 
which could be achieved through institutional collaboration, according to Pinelli et al. (2020). In 
addition, similar to improving exposure data, AI combined with LiDAR technology could refine the 
understanding of geographical risk. 

Fifth, a common data-sharing ecosystem across Europe could address challenges caused by 
siloed or closed-off data, particularly from government sources currently unwilling to share. A 
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report from The Geneva Association (2018) affirms that insurers cope with limited access to risk 
information, which hinders accurate pricing. As a response, three participants called for an 
ecosystem that could serve as a central hub for comprehensive meteorological data, currently 
collected on a country-by-country basis, to foster a more unified climate risk assessment 
framework across the continent. Open-source initiatives and risk data, along with standardized 
hazard maps, would reduce the cost of risk analysis and underwriting (Warner et al., 2013), 
ultimately leading to improved risk assessment and the development of innovative new insurance 
products. 

Sixth, public-private collaboration presents an avenue for reducing economic and regulatory 
uncertainty. While not explicitly identified as a clear-cut solution during the interviews, five 
participants emphasized the benefits of cross-sector collaboration. These include incentivizing 
DRR strategies (Pattberg, 2010), fostering innovation and resilience through knowledge sharing, 
and facilitating resource mobilization (Drejer & Jørgensen, 2005). In addition, clarity on future 
regulations ensures better alignment across sectoral incentives, allowing the industry to 
proactively integrate this consideration into their risk management strategies (The Geneva 
Association, 2018). 

7.2 Policy implications 
To effectively address climate risk, innovations should be made beyond the short-term focus of 
non-life insurance as large climate shocks pose an increasing challenge to the industry, as well as 
society. Therefore, improved environmental understanding is crucial for supporting the 
development of more sophisticated climate risk assessment methods and ongoing research is 
required to enhance the comprehension of climate-related impacts. To accelerate progress, the 
insurance industry should foster stronger, more coordinated engagement with the scientific 
community (Golnaraghi et al., 2016). Internationally coordinated research programs and 
operational initiatives can bridge the gap between climate research and risk pricing, through which 
a mutual understanding of needs can be fostered and a disconnect between institutions can be 
decreased. Furthermore, progress in scientific research and scenario analysis, combined with 
technical innovations, such as big data, digital mapping, and advanced computing offers novel 
opportunities for developing advanced climate-risk modules. Evaluating the success of industry-
science initiatives could be measured by factors like knowledge transfer, increased research 
output, technological innovation, and ultimately, the improvement of Nat Cat models themselves. 

From a governmental perspective, a strong regulatory framework could foster innovation in 
climate risk assessments by creating supportive regulations for data-sharing ecosystems and 
supporting the development of climate-risk models, which are needed to improve parameter 
validation. Systematic collection and availability of publicly funded environmental and socio-
economic data should be promoted and alternative remotely sensed datasets should be 
implemented in insurance solutions (Warner et al., 2013). Regulations facilitating public-private 
partnerships can further leverage combined expertise to accelerate progress and address 
economic uncertainties. As such, governments, policymakers, and regulators across sectors 
should work in a more coordinated fashion to build socio-economic resilience to climate change. 

7.3 Limitations and future research 
The qualitative research methodology used for conducting semi-structured interviews is limited by 
some inherent challenges. The reliance on participant responses raises potential concerns as the 
qualitative nature of the data makes it challenging to objectively verify participants’ responses. 
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Besides, the research design allows for a degree of participant control over the content (Queirós 
et al., 2017). Moreover, recruiting a more diverse group of experts, particularly those from Nat 
Cat model vendor companies, could have yielded a wider range of perspectives. This possible 
lack of representativeness could lead to sampling bias, where individual views disproportionately 
influence the findings, reducing their generalisability and credibility (Gobo, 2004). Additionally, a 
larger sample may achieve further data saturation, elaborating on important themes and nuances 
(Hennink et al., 2017). 

It should be acknowledged that this research takes an explorative approach to identifying 
innovation areas in climate risk assessments. Building upon these insights, future research could 
look deeper into the practical application of proposed innovations by evaluating the feasibility and 
challenges associated with implementing the innovations in collaboration with industry leaders. 
Furthermore, improved modeling of climate risks has the potential to increase premiums and the 
number of assets defined as high-risk is growing, partly due to the increasing frequency and 
severity of climate-related events (Jarzabkowski et al., 2019). Future research should look into the 
long-term insurability of natural hazards to prevent a market failure where people cannot afford 
the increasing costs of insurance, or where insurers can’t price policies high enough to cover the 
risk. 

 

8 Conclusion 
This article has synthesized the literature on climate risk insurance models and their 
characteristics in a literature review. Climate risk insurance models range from simple pricing 
applications to more complex partial equilibrium and agent-based models that can be used to 
assess research questions about insurance uptake and affordability. All models can be subdivided 
into two components: the risk module and the insurance module. The risk module can either be a 
catastrophe model that simulates the risk approached from hazard, exposure, and vulnerability 
aspects, or it can be based on historical data via an actuarial approach. Catastrophe models are 
typically more effective in assessing the risk of climatic hazards characterized by a low probability 
of occurrence but high impact, such as floods. On the other hand, actuarial approaches prove 
more beneficial in evaluating risks associated with climatic hazards that occur more frequently, 
such as windstorms or wildfires.  

Most forward-looking models indicate that climate change and socioeconomic developments 
exacerbate future risk and, hence, lead to increased insurance premiums. Various studies 
recommend introducing risk-based premiums to incentivize DRR efforts that limit this increase in 
climate risks, combined with policy strategies that address affordability issues among low-income 
households. Other findings point toward introducing public–private insurance to cope with climate 
change and enhance risk spreading by introducing insurance purchase requirements or insurance 
products that cover multiple climate risks. 

Moreover, the research identifies key challenges in current climate risk assessment approaches 
and explores innovative solutions through stakeholder analysis with insurance industry experts. 
Firstly, the reliance on historical data limits the accuracy of climate risk models in predicting natural 
hazards. This research highlights the need for integrating long-term and adaptive views of climate 
risk, incorporating non-linear environmental changes. Improved risk data and analysis of the 
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impact of climate change are essential to increase understanding of event frequency, severity, 
and potential financial losses. 

Secondly, climate risk models depend heavily on assumptions and parameter validation, which 
relies on benchmarking against other models and underlying data, including exposure and 
vulnerability information, which is often lacking. This gap necessitates updated tools and 
institutional collaboration to improve data gathering. 

Thirdly, emerging technologies and open-source initiatives have the potential to enhance climate 
risk models significantly. Leveraging AI, digital mapping, and advanced computing can improve 
the granularity of terrain data and, in turn, the accuracy and reliability of risk assessments. Public-
private initiatives could facilitate these advancements and further reduce exogenous uncertainty. 
Based on the stakeholder analysis, we suggest that future research should focus on the practical 
application of proposed innovations and exploring long-term insurability of natural hazards to 
prevent market failure.  

Furthermore, other knowledge gaps were identified and a research agenda was suggested based 
on the literature review to improve modeling techniques to aid decision-making in insurance policy 
design. First, flood insurance tends to be highly overrepresented in the climate risk insurance 
modeling literature. Second, most models are applied to case studies in developed countries, 
despite the potential for developing countries to experience a more substantial increase in natural 
disaster damages, making them potentially more significant beneficiaries of insurance coverage. 
Third, the coverage for non-agricultural commercial sector insurance is limited, even though a 
sizable portion of the climate-related damages can be found in this sector, also through business 
interruption. 

Merely half of the reviewed papers applied forward-looking climate risk analyses by utilizing climate 
change scenarios to examine the impact of climate change on risk. With climate change increasing 
the frequency and severity of natural hazards, this indicates a considerable research gap. 
Furthermore, an even smaller number of studies incorporated socioeconomic development 
scenarios to consider their effects on future risk. This suggests that only a subset of the reviewed 
papers is truly valuable for evaluating the ability of insurance to cope with future climate change.  

The field of climate risk insurance modeling is growing, and the current state-of-the art models are 
certainly capable of addressing pivotal inquiries related to climate risk insurance. Addressing the 
research gaps identified by our review is imperative for delivering insights into how the insurance 
sector can proactively adapt to the challenges posed by climate change. By refining models, 
expanding geographical and hazard coverage, improving the inclusion of the commercial sector, 
and embracing a forward-looking perspective, the insurance industry will be better equipped to 
fulfil its role in mitigating the financial impacts of climate-related losses and fostering resilience. 
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10 Appendix 
 

 

Supplementary table 1: keywords used in query 

Keyword group Subgroup Keywords 
Hazard  Perils flood, river, coastal, inundation, pluvial, storm, hail, hurricane, 

cyclone, tornado, sea level rise, tsunami, landslide 
 Synonym disaster, catastrophe, climate hazard 
Model type Type catastrophe model, damage model, actuarial model, insurance 

supply model, econometric model, agent based model, ABM, 
machine learning model, machine learning, deep learning  

 Data  geospatial model, GIS 
Insurance - insurance, compensation system, compensation arrangement, 

reinsurance, microinsurance, actuarial 

 

The final search string has the following form:  

TITLE-ABS-KEY ( flood* OR river* OR coast* OR inundation OR pluvial OR storm* OR hail OR hurricane OR cyclone OR tornado OR "sea level rise" 
OR landslide OR wildfire OR drought OR climat* ) AND TITLE-ABS-KEY ( model* OR abm OR "machine learning" OR "deep learning" OR gis OR "geo 
information science" OR ai OR "artificial intelligence" ) AND TITLE-ABS-KEY ( insur* OR "compensation arrangement" OR "compensation system" OR 
reinsur* OR microinsurance OR actuar* ) AND ( LIMIT-TO ( LANGUAGE , "English" ) ) AND ( LIMIT-TO ( DOCTYPE , "ar" ) ) 
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Supplementary table 2: risk and insurance model types 

Paper Risk model type Insurance model type 

Aerts and Botzen (2011) Catastrophe Pricing (supply model) 

Barreal et al. (2014) Econometric Partial equilibrium 

Birghila et al. (2022) Catastrophe Demand model 

Boudreault and Ojeda 
(2022) 

Catastrophe Pricing (supply model)  

Boudreault et al. (2020) Catastrophe Pricing (supply model) 

Brunette et al. (2015) Econometric Pricing (supply model) 

Brunette et al. (2017) Theoretical Partial equilibrium 

Crick et al. (2018) Catastrophe Agent based 

Ding et al. (2017) Catastrophe Principal agent 

Dubbelboer et al. (2017) Catastrophe Agent based 

El-Adaway (2012) Econometric Pricing (supply model) 

Ermolieva et al. (2017) Catastrophe Partial equilibrium 

Guo et al. (2022) Econometric / 
catastrophe 

Game theory 

Hudson et al. (2016) Catastrophe Partial equilibrium 

Hudson et al. (2019) Catastrophe Partial equilibrium 

Islam et al. (2021) Econometric Demand model 

Jenkins et al. (2017) Catastrophe Agent based 

Kalfin et al. (2022) Econometric Pricing (supply model) 

Kesete et al. (2014) Econometric / 
catastrophe 

Game theory 

Kunreuther et al. (2012) Catastrophe Pricing (supply model) 

Loisel et al. (2020) Catastrophe Partial equilibrium / 
game theory 

Moosakhaani et al. 
(2022) 

Catastrophe Game theory 
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Peng et al. (2014) Econometric / 
catastrophe 

Game theory 

Perazzini et al. (2022) Catastrophe Partial equilibrium 

Pinheiro and Ribeiro 
(2013) 

Econometric Pricing (supply model) 

De Ruig et al. (2022) Catastrophe Agent based 

De Ruig et al. (2023) Catastrophe  Agent based 

Sacchelli et al. (2018) Catastrophe Pricing (supply model) 

Sidi et al. (2017) Econometric Pricing (supply model) 

Tanaka et al. (2022) Catastrophe Agent based 

Tesselaar et al. (2020a) Catastrophe Partial equilibrium 

Tesselaar et al. (2020b) Catastrophe Partial equilibrium 

Tesselaar et al. (2022) Catastrophe Partial equilibrium 

Thompson et al. (2015) Econometric Pricing (supply model) 

Unterberger et al. 
(2019) 

Catastrophe Partial equilibrium 

Walker et al. (2016) Catastrophe Pricing (supply model) 
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Supplementary table 3: risk characteristics of the models 

Paper Hazard type Multi-hazard / single-hazard Country/region Climate change 
scenario(s) inclusion 

Socioeconomic 
development 
scenario(s) inclusion  

Risk reduction inclusion 
(by 
household/government/business) 

Aerts and Botzen (2011) Flooding (coastal and 
riverine) 

Single-hazard The Netherlands Yes, four climate change 
scenarios 

Yes, future land-use 
maps based on two 
economic growth 
scenarios 

Yes (g) 

Barreal et al. (2014) Wildfire Single-hazard Spain No No Yes (b) 
Birghila et al. (2022) Drought Single-hazard Austria Yes, RCP4.5 No Yes (b) 
Boudreault and Ojeda 
(2022) 

Flooding (riverine) Single-hazard Canada No No No 

Boudreault et al. (2020) Flooding (riverine) Single-hazard Canada Yes, RCP4.5 and 
RCP8.5 

No No 

Brunette et al. (2015) Wildfire, wind throw, 
insect outbreaks 

Multi-hazard Slovakia No No No 

Brunette et al. (2017) Damage to forest in 
general 

Single-hazard and multi-
hazard 

- No No Yes (b) 

Crick et al. (2018) Flooding (surface 
water) 

Single-hazard UK, London Yes, a baseline and high-
emission scenario 

No Yes (g [and developers]) 

Ding et al. (2017) Debris flows Single-hazard Shengou Basin, China No No No 
Dubbelboer et al. (2017) Flooding (surface 

water) 
Single-hazard UK, London Yes, high-emission 

scenario 
No Yes (h + g) 

El-Adaway (2012) Windstorms Single-hazard United States, Mississippi No No No 
Ermolieva et al. (2017) Flooding (riverine and 

coastal) 
Single-hazard The Netherlands, Rotterdam No No No 

Guo et al. (2022) Hurricanes (flood and 
wind) 

Single-hazard United States, North Carolina No No Yes (h + g) (government does 
buyouts and offers subsidies) 

Hudson et al. (2016) Flooding (riverine) Single-hazard France and Germany Yes, SRES A1B 
greenhouse gas 
emission scenario 

Yes, socioeconomic 
projections at the 
national level from 
CIESIN 

Yes (h) 

Hudson et al. (2019) Flooding (riverine) Single-hazard European Union Yes, SRES A1 scenario Yes, ensemble mean of 
SSP scenarios 

Yes (h + g) 

Islam et al. (2021) Flooding (flash floods) Single-hazard Bangladesh No No No 
Jenkins et al. (2017) Flooding (surface 

water) 
Single-hazard UK, London: Camden Yes, high-emission 

scenario 
No Yes (h + g) 

Kalfin et al. (2022) Natural disasters in 
general 

Single-hazard and multi-
hazard 

Indonesia No No No 
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Kesete et al. (2014) Hurricanes Single-hazard United States, North Carolina No No No 
Kunreuther et al. (2012) Hurricanes Single-hazard United States, Florida Yes, six future hurricane 

scenarios 
No Yes (h) 

Loisel et al. (2020) Storm Single-hazard Southwest France No No No 

Moosakhaani et al. (2022) Flooding (riverine) Single-hazard Iran No No No 
Peng et al. (2014) Hurricanes Single-hazard (but it covers 

both wind and flood 
damage) 

USA, North Carolina No No Yes (h + g) 

Perazzini et al. (2022) Earthquakes, flooding 
(general) 

Single- and multi-hazard Italy No No No 

Pinheiro and Ribeiro 
(2013) 

Wildfire Single-hazard Portugal No No No 

De Ruig et al. (2022) Flooding (coastal and 
riverine) 

Single-hazard (flooding 
seen as one type) 

United States Yes, RCP4.5 and 
RCP8.5 

Yes, SSP2 and SSP5 Yes (h + g) 

De Ruig et al. (2023) Flooding (coastal) Single-hazard USA, New York City: 
Jamaica Bay 

Yes, sea level rise Yes, SSP2 and SSP5 Yes (h) 

Sacchelli et al. (2018) Wildfire and storm Multi-hazard Italy No No No 
Sidi et al. (2017) Flooding (riverine) Single-hazard Indonesia No No No 
Tanaka et al. (2022) Flooding 

(riverine/pluvial) 
Single-hazard Japan Yes, 2- and 4-degree 

temperature rise 
Yes, income and house 
prices increase over 
time; economy grows at 
a constant rate over 
time 

No 

Tesselaar et al. (2020a) Flooding (riverine) Single-hazard European Union + UK Yes, RCP4.5 and 
RCP8.5 and the average 
of five GCM scenarios 

Yes, SSP2 and SSP5 
and Winsemius et al.’s 
(2016) future 
simulations of built-up 
area 

Yes (h) 

Tesselaar et al. (2020b) Flooding (riverine) Single-hazard European Union + UK Yes, RCP2.6, RCP4.5, 
RCP6.0, RCP8.5, and 
the average of five GCM 
scenarios 

Yes, SSP1, SSP2, 
SSP3, SSP5, and 
Winsemius et al.’s 
(2016) future 
simulations of built-up 
area 

Yes (h) 

Tesselaar et al. (2022) Flooding (riverine) Single-hazard European Union + UK Yes, RCP4.5 (more RCP 
scenarios in the 
Appendix), and the 
average of CMIP5 GCM 
scenarios 

Yes, SSP2 (more SSP 
scenarios in Appendix), 
and Winsemius et al.’s 
(2016) future 
simulations of built-up 
area 

Yes (h) 

Thompson et al. (2015) Wildfires Single-hazard Western USA No No No 
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Unterberger et al. (2019) Flooding (riverine) Single-hazard Austria Yes, RCP8.5 and 5 GCM 
scenarios 

Yes, SSP5  Yes (g) 

Walker et al. (2016) Cyclones  Single-hazard Australia Yes, maximum wind 
speeds increase by 5% 
each year over a 90-year 
period 

Yes, vulnerability curve 
is shifted such that 
higher wind speeds 
cause the same level of 
damage 

Yes (h) 
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Supplementary table 4: insurance characteristics of the models 

Paper Consumer 
type 

Insurance markets Competition 
between insurers 
modeled 

Commercial 
sector 
insurance 

Premium setting Decision to insure 

Aerts and Botzen 
(2011) 

Households Private and public–private No No Risk-based with a premium loading factor to 
account for insurance company costs and 
profit; insurers pay up to a cap, and the 
government pays the rest. 

Households are obliged to take flood insurance. 

Barreal et al. (2014) Forestry 
sector 

- No Yes The optimal premium is calculated between 
the difference in expected damage with and 
without insurance. 

Based on the net present value of forest investments 

Birghila et al. (2022) Farmers One representative 
insurer 

No Yes The premium is based on the distortion 
premium principle, where the loss suffered is 
multiplied by a distortion risk measure, which 
leads to higher values for low-probability high-
consequence events. The premium also 
contains a loading factor. The policyholder has 
a budget of which a proportion is available for 
the premium (representing a deductible). The 
government also finances a proportion of the 
premium. 

Only the middle losses are potentially insured; small 
losses are for the insurance taker, and large losses 
require outside assistance. How large the proportion of 
middle losses is is determined via an optimization 
problem. The optimization problem is based on the loss 
distribution for the case of only a single loss distribution 
(non-ambiguous case) or the case of multiple loss 
distributions (ambiguous case). The policyholder is 
expected to be risk neutral for small losses and risk 
averse for large losses. The policyholder has a budget 
of which a proportion is available for the premium 
(representing a deductible). 

Boudreault and Ojeda 
(2022) 

Households Two competing insurance 
companies 

Yes No The insurance company clusters the 
households based on similar flood risk and 
bases the premium on the average annual loss 
per cluster. 

Homeowners choose the insurance contract with the 
lowest premium. 

Boudreault et al. 
(2020) 

Households One representative 
insurer 

No No A base premium times the relative riskiness 
and the exposure or a risk-sharing parameter 
(to spread the risk across all policyholders in 
the portfolio) instead of the relative riskiness; if 
this is too low, the flood loss does include a 
deductible and a limit. The relative riskiness is 
calculated per region. 

NA 

Brunette et al. (2015) Forestry 
sector 

One representative 
insurer 

No Yes Risk-based + extra premium to insure the 
forest stand in relation to the total insured area 
of hectares to reduce the risk of the insurer. 

NA 
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Brunette et al. (2017) Forestry 
sector 

One representative 
insurer 

No Yes The insurer is risk neutral, and the price of 
insurance is given as the unit price of 
insurance times the compensation amount. 
The insurance contract includes a deductible 
that can be chosen by the insured. 

Based on a strictly increasing and concave utility 
function (risk aversion) 

Crick et al. (2018) Households Public market with public 
reinsurance scheme 
FloodRe 

No No Risk-based taking risk-reduction methods into 
account, a deductible, and a base premium. 
The impact of the reinsurance scheme 
FloodRe on the premium is also calculated. 

Households are obliged to take flood insurance. 

Ding et al. (2017) Households One representative 
insurer 

No No The premium is chosen by the insurance 
company alongside the rate of compensation 
based on an income-maximizing problem that 
considers the risk degree of debris flow, the 
total insured assets, the premium, the rate of 
compensation, and the loss caused by debris 
flow.  

The decision to purchase insurance is based on an 
expected utility curve that takes into account the risk 
degree of debris flow, the total assets of the insurant, 
the loss caused by debris flows, the premium, and the 
rate of compensation. 
 
  

Dubbelboer et al. 
(2017) 

Households Public market with public 
reinsurance scheme 
FloodRe 

No (mentions 
what could 
happen if 
competition was 
modeled) 

No Risk-based taking risk-reduction methods into 
account, a deductible, and a base premium. 
The impact of the reinsurance scheme 
FloodRe on the premium is also calculated. 

Households are obliged to take flood insurance. 

El-Adaway (2012) Civil 
infrastructure 
developments 

One representative 
insurer 

No No Based on running a Monte Carlo simulation on 
bootstrapped historical loss data. 

NA 

Ermolieva et al. (2017) Households 
and firms 

Insurers, governments, 
reinsurers, and funds are 
grouped via a risk 
reserve. In the case 
study, only one insurer or 
catastrophe fund 
operates per region.  

No Yes Using quantile-based stochastic optimization 
under a range of safety constraints across 
stakeholders to produce optimal risk-based 
location-specific insurance premiums and 
coverage. 

The decision variables, including insurance coverage, 
is determined via the optimization of the system. 

Guo et al. (2022) Households A market of multiple 
insurers, incorporated via 
a perfect information 
Cournot–Nash 
noncooperative game 

Yes No The premium price is defined as charge per 
expected dollar loss and varies by region. 
Hypothetical insurance price levels are first 
simulated to maximize the insurers’ net profits, 
and these insurance prices are then 
implemented in the Cournot–Nash equilibrium 
model to generate the equilibrium risk-based 
insurance prices. 

Based on a mixed logit model using the insurance 
premium, the deductible, an indicator of whether the 
home is located inside or outside the floodplain, the 
house-to-coastline distance, the number of hurricanes 
experienced by the homeowner, the homeowner’s 
income, age, and years since the last hurricane 
experienced as covariates. There is also an 
affordability constraint such that the premium cannot 
exceed the homeowner’s budget expressed as a 
percentage of the home value. 
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Hudson et al. (2019) Households Six market structures, 
ranging from public to 
private 

Yes (in Appendix) No Risk-based and depending on the number of 
households in a region, the premium includes 
a loading factor and a deductible; there is an 
incentive in the premium for DRR methods: 
The premium gets lower via the effectiveness 
ratio of the DRR method. 

Subjective expected utility that accounts for 
affordability 

Hudson et al. (2016) Households A public–private flood 
insurance scheme 

No No Various insurance premium rules, including 
risk-based, risk-based with a risk reduction 
premium discount, capped risk-based 
premium, and solidarity premium. 

Subjective expected utility that accounts for 
affordability 

Islam et al. (2021) Crop 
insurance 

Only an insurance 
premium is calculated. 

No Yes Damage based for different coverage levels 
and interest rates 

Binary logistic regression approach to elicit the 
willingness to adopt insurance 

Jenkins et al. (2017) Households Public market with public 
reinsurance scheme 
FloodRe 

No (mentions 
what could 
happen if 
competition was 
modeled) 

No Expected annual loss of the insurers minus the 
excesses and base flood insurance premium; 
the remaining loss is spread across the 
households based on risk. There is an option 
for reinsurance and risk reduction measures. 

Households are obliged to take flood insurance. 

Kalfin et al. (2022) Households 
 

No explicit interaction 
between insurers 

Yes (model that 
the paper 
expands on 
mentions 
competition) 

No Risk-based with a system that taxes the low-
risk areas to provide a subsidy to the high-risk 
areas 

NA 

Kesete et al. (2014) Households One representative 
insurer 

No No Premiums are set via a Stackelberg leader–
follower game, where the insurer determines 
the price of the premium, and the homeowner 
decides whether or not to purchase insurance 
based on a utility function. One reinsurer 
provides reinsurance at a specified price, and 
the government can set constraints to both 
the insurer and the homeowners. The 
premium gets determined via stochastic 
optimization of this system, where the insurer 
wants to optimize its profit, avoid insolvency, 
and maintain sufficient yearly profitability. The 
premium includes a deductible and loading 
factor for the insurer’s administration costs 
and profit margin. The premium should be 
greater than a certain value. 

Based on an expected utility function where the 
homeowners are expected to be risk-averse and have 
a maximum budget for insurance based on a 
percentage of the home value. 

Kunreuther et al. 
(2013) 

Households Two different insurance 
markets: a hard (with 
capital scarcity and high 
reinsurance prices) and a 
soft one (with capital 

No No Risk-based with a loading factor to cover 
additional cost (this loading factor is not used 
in the case study). The premium also 
considers a risk aversion parameter. The 

NA 
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abundance and low 
reinsurance prices). One 
representative insurer. 

premium is calculated for both the insurer and 
reinsurer. 

Loisel et al. (2020) Forestry 
sector 

One representative 
insurer 

No Yes The insurance premium is a decision variable 
in the model and can be set by the insurer. The 
insurer sets the insurance premium by making 
sure it is more than the future losses multiplied 
by a discount rate connected to the cutting 
age of the trees. The premium also includes a 
loading factor. The cutting age of the trees is 
determined by the forest owner and 
determines the forest land expected value 
(Faustmann value). The insurer sets an upper 
premium, the premium that is used when the 
forest owner decides to fully insure their forest. 

The decision to insure is given by a decision variable 
that takes values between 0 and 1, where 1 means full 
insurance, and 0 means no insurance. The decision to 
insure depends on the Faustmann value, which stands 
for the forest land expected value.  

Moosakhaani et al. 
(2022) 

Households 
and 
government 

Three insurers that all 
have an insurance plan 
for property owners and 
an insurance plan for the 
government 

Yes No The premium includes a deductible and a fixed 
number for each loss to cover other costs. 

The property owners and the government decide to 
buy insurance based on their payoff functions. The 
decision is determined via the Nash equilibrium in a 
game-theoretic approach where the insurers, property 
owners, and the government play a role. Government 
compensation also plays a role, but keep in mind that 
in this paper, the insurers also offer insurance to the 
government. 

Peng et al. (2014) Households One representative 
insurer 

No No The premium is based on the expected value 
of the loss per building type considering 
coverage of the full home value with a 
specified deductible. The premium also 
contains two loading factors: one for the 
administrative costs, and one for the profit 
margin per risk region. The insurer is expected 
to maximize its profit. In this scheme, 
retrofitting decreases the expected loss and, 
thereby, the premium charged. There is a 
minimum premium threshold. 

The model is run for five configurations, either allowing 
or disallowing retrofitting with or without a government 
subsidy and mandatory or voluntary insurance. Under 
voluntary insurance, the decision to insure is 
determined via a Stackelberg game between the 
insurer and the homeowners. The insurer determines 
the premiums of various policies and decides how 
much reinsurance to purchase. The homeowner then 
decides what policy and/or what retrofit options they 
want to purchase. The decision-making of the 
homeowners is ultimately decided via utility 
maximization. Each homeowner has a maximum 
budget for homeowner insurance equal to a specified 
percentage of the total home value; this percentage 
varies per risk region. 

Perazzini et al. (2022) Households Private and public–private 
insurance 

Yes (but only 
mentions) 

No Risk-based plus profit loading, where the risk-
based premium should be in the premium the 
households are willing to pay, and the profit 
should be adequate. 

Willingness to pay calculated using a utility function 
expecting the homeowners to be rational and risk-
averse. 
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Pinheiro and Ribeiro 
(2013) 

Forestry 
sector 

One representative 
insurer 

No Yes There is no explicit premium calculated, but 
the maximum premium a forest owner is willing 
to pay is based on the expected risk and size 
of the forest. 

Not explicitly stated but based on the relation between 
expected loss and the premium 

De Ruig et al. (2022) Households Public insurance program 
with four different 
structures 

No No Based on old national flood insurance program 
premiums / risk-based with a risk reduction 
premium discount 

Subjective expected utility function and affordability 

De Ruig et al. (2023) Households Public insurance program 
with four different 
structures 

No No Based on old national flood insurance program 
premiums / risk-based with a risk reduction 
premium discount 

Subjective expected utility function that accounts for 
bounded rationality in forming risk perceptions and 
affordability 

Sacchelli et al. (2018) Forestry 
sector 

No explicit interaction 
between insurers 

No Yes A base premium based on the expected 
annual loss with a risk premium to allow 
insurance companies to prepare for extreme 
years, variable management costs, and fixed 
insurance company costs. 

NA 

Sidi et al. (2017) Buildings No explicit interaction 
between insurers 

No No The premium is calculated as random variable 
via different methods, via the Esscher 
principle, based on the proportional hazards 
approach, Wang’s models, Swiss model, and 
Dutch model. 

NA 

Tanaka et al. (2022) Households No explicit interaction 
between insurers 

No No The insurance premium is given per house 
type per period based on the expected annual 
flood damage ratio. The insurance rate is 
multiplied by a markup rate that reflects risk 
aversion. The flood risk is expected to be 
perfectly reflected in the insurance premium 
with the markup rate.  

The ratio of households that anticipate flood risk is 
given; these households will buy insurance. 
Households take full insurance. 

Tesselaar et al. 
(2020a) 

Households Flood insurance systems 
that involve a reinsurer: a 
voluntary system and a 
semi-voluntary system 

Yes No The premium is risk-based and includes a 
deductible of 15% of the loss. The insurer also 
increases the premium due to the uncertainty 
of damage by multiplying a risk aversion 
coefficient with the volatility of damage; 99.8% 
of damages are considered insurable. The 
insurer cannot charge a profit loading factor 
but does charge a cost loading factor. Based 
on market-structure, there might also be 
mandatory insurance. 

The decision to insure is based on a subjective 
expected utility function. Households can receive a 
discount on the premium by implementing disaster 
reduction measures. The premium should be equal or 
smaller than the poverty-adjusted disposable income. 

Tesselaar et al. 
(2020b) 

Households Six stylized insurance 
market structures, 
ranging from full 
mandatory to full 
voluntary and from public 
to private. Four market 

Yes No The premium is risk-based and includes a 
deductible of 15% of the loss. The insurer also 
increases the premium due to the uncertainty 
of damage by multiplying a risk aversion 
coefficient with the volatility of damage; 99.8% 
of damages are considered insurable. The 

The decision to insure is based on a subjective 
expected utility function. Households can obtain a 
discount on the premium by implementing disaster 
reduction measures. The premium should be equal or 
smaller than the poverty-adjusted disposable income. 
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forms are stylized to 
European insurance 
markets, and two are 
hypothetical. 

insurer cannot charge a profit loading factor 
but does charge a cost loading factor. Based 
on market-structure, there might also be 
mandatory insurance. 

Tesselaar et al. (2022) Households Four market structures, 
ranging from full 
mandatory to full 
voluntary, with either a 
risk-based or a non-risk-
based premium 

Yes No Based on the market structure. In the 
voluntary system, the premiums are risk-
based, 99.8% of damages are considered 
insurable, a deductible is set as 15% of the 
loss, there is a risk aversion parameter that 
increases the premium, and there is no profit 
loading factor, but there is a cost loading 
factor. Households receive a premium 
discount if they implement risk reduction 
measures; the premium also contains a 
reinsurance premium that is calculated in a 
similar way as the insurance premium but 
does contain a profit loading factor of 50% of 
the underwritten risk. In the semi-voluntary 
system, the premiums are still risk-based, but 
many households are mandated to take 
insurance. In the solidarity system, the 
premiums are insensitive to risk, and all 
households are mandated to take insurance. 
In the public–private partnership, the 
premiums are risk-sensitive up to a certain 
point; insurance uptake is mandatory for 
mortgage holders. 

If the premium does not cause the household to fall 
under the poverty line, the decision to purchase 
insurance is based on maximizing an expected utility 
curve, which is also dependent on whether the 
household anticipated government aid after a flood. 

Thompson et al. 
(2015) 

Annual wildfire 
suppression 
costs 

NA No NA The paper couples a wildfire simulation model 
and a suppression cost model to estimate 
probability distributions for the suppression 
costs. The suppression cost of a fire is 
comparable to an insurance premium. The 
total suppression costs for a national forest is 
defined as the sum of all suppression 
expenditures per escaped large wildfire. The 
expected value of the suppression cost is 
calculated by multiplying the expected value of 
the number of escaped large wildfires in a 
given fire season by the expected value of the 
suppression costs per large fire. The variance 
of the total suppression costs is defined as the 
expected value of the number of escaped 
large wildfires times the variance of the 

NA 
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suppression costs per large fire plus the 
expected value of the suppression costs per 
large fire squared times the variance of the 
number of escaped large wildfires. 

Unterberger et al. 
(2019) 

Public 
infrastructure 

Insurance is organized in 
three market forms: one 
where there is just a 
disaster fund, one where 
there is risk transfer to a 
private insurer, and one 
where there is a public–
private insurance 
mechanism. The 
insurance sector is 
simplified to one 
representative insurer. 

No No The premiums are based on the expected 
annual damage with a surcharge that 
represents the volatility in annual losses, which 
reflects the risk aversion of reinsurers. On top 
of this premium, there is a further surcharge 
that is used to cover administrative costs and 
generate a profit. The premiums are 
calculated for both federal and regional 
governments and include a deductible of 15% 
of the loss suffered. 

There is no decision to take up insurance, but there is 
a decision to employ dry flood-proofing, which is 
calculated via the net-present value of the reduction in 
premiums over 20 years (which is considered as the 
lifespan of the dry flood-proofing measure). 

Walker et al. (2016) Constructed 
assets 

There is no explicit 
interaction between 
insurers; the model works 
with one hypothetical 
insurer. 

No Yes Premiums are calculated based on the 
average annual risk of loss multiplied by a risk 
loading factor that reflects the administrative 
costs and a term that increases the 
nonlinearity, essentially reflecting the volatility 
for the insurer. 

NA 
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Supplementary table 5: participant roles 

Participant Role Description  

1 Actuary for insurance - Netherlands 

2 Expert in climate insurance - France 

3 Expert in climate insurance innovation - France 

4 Catastrophe expert for commercial insurance - Italy 

5 Actuarial consultant - Finland 

6 Catastrophe expert for commercial insurance - Germany 

7 Expert in public climate insurance - France 

8 Actuary for insurance - Greece 

9 Mathematician for insurance - Finland 

10 Actuary for insurance - Netherlands 

11 Reinsurance expert – Netherlands  

12 Nat Cat and reinsurance expert - Netherlands 

13 Actuary and reinsurance expert – Europe wide 

14 Climate data analyst for reinsurance - Switzerland 

15 Nat Cat research analyst for commercial insurance – Germany  

16 Flood risk modeler - UK 
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Full list of interview questions 

Do you agree to participate in this interview? (yes/no) 

Do you give permission for this interview to be recorded? (yes/no)  

1. Is your organization using climate change risk or natural hazard risk information? (yes/no) 

If no, discontinue. 

2. How does your organization gather and store this information? 

3. Does your organization use the information for natural disaster risk modeling purposes? (yes/no) 

If no, skip to q6. 

4. What types of natural hazards are modeled at your organization using climate change risk or natural hazard risk information (e.g. floods, windstorms, heatwaves, etc.)? 

5. What types of insurance products are these modeled for (e.g. homeowners’ insurance, insurance against business interruption costs, etc.)?  

6. Does your organization use climate change risk or natural hazard risk information for any other purpose (if yes, elaborate)? 

If no to q3, discontinue. 

7. Is your organization using in-house or external party natural disaster risk models? 

If in-house, skip to q10. 

8. Do you have insights into the components of external party natural disaster risk models so you can well interpret the results or are they a black box? 

If they can interpret well, skip to q10. 

9. Is it a problem for your organization that they are a black box? 

If black box to q8, discontinue. 

10. What specific types of climate data and other inputs are used to model the natural hazards? 

11. In your opinion, are there other types of data/inputs that would facilitate a more accurate assessment of the natural hazards? 

12. What type of outputs result from the natural disaster risk modeling (e.g. damage per event, risk distribution, etc.)? 

13. What type of damages/losses are these outputs (e.g. direct damage to buildings, business interruption losses, etc.)? 

14. Is climate change adaptation taken into account in the natural disaster risk models? 
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15. Do you know what types of models are used specifically (e.g. are they catastrophe (CAT) models, econometric/actuarial models, etc.)? 

If don’t know, skip to q17. 

16. What types of hazards are the model types used for? 

17. Do you know whether they are forward-looking natural disaster risk models that assess the risk in a future climate? (yes/no) 

If no, skip to q21. 

18. For these forward-looking models, do you use climate forecasts or climate projections (or both)? 

19. Which type of model (forecast or projection) is better in your opinion and why? 

20. Do you know what types of climate change and socio-economic scenarios are used in these forward-looking models (if yes, elaborate)? 

21. In your opinion, what are the main uncertainties involved in natural disaster risk modeling? 

If none stated, skip to q23. 

22. Are there ways that natural disaster risk models may better address these uncertainties? 

23. How can natural disaster risk modeling approaches be advanced to improve the ability of the insurance sector to cope with climate change related risks? 

24. In general, are there any new scientific insights that are needed to advance natural disaster risk modeling approaches? 
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Use of Gioia Methodology in deriving sub-codes 

1 The Gioia Methodology inspired the process of inductively deriving the sub-codes for “Hazard”, “Uncertainties and Challenges”, and “Innovation Potential”. The Gioia Methodology is a systematic 
approach to new concept development and grounded theory articulation that is designed to bring qualitative rigor to the conduct and presentation of inductive research (Gioia et al., 2013).  

2 While the core principles of the Gioia Methodology were adopted, the process was tailored to the specific needs of the research: 

1. Open Coding: Similar to the Gioia methodology, the analysis began with open coding, assigning initial codes to relevant data segments.  

2. Building First-Order Concepts: As the analysis progressed, a natural clustering of similar topics around these initial codes was observed. These clusters represent the "first-order concepts" in the 
Gioia methodology. In this study, they formed the foundation for the sub-codes. 

3. Refined Sub-Codes: Unlike the Gioia methodology, which progresses to develop second-order themes and aggregate dimensions, the analysis stopped at this point. Since the sub-codes already 
belonged to a broader overarching theme, further abstraction wasn't necessary. These themes included "Hazard", "Uncertainties and Challenges", and "Innovation Potential". 

4. Connecting Challenges to Innovation: The final step involved exploring the relationship between the "Uncertainties and Challenges" sub-codes and the "Innovation Potential" sub-codes. This analysis 
served as the basis for the discussion section of this research. 
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Example of Coding Process 
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