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Summary

Climate risk insurance models are increasingly relevant due to the rising losses attributable to
climate change. This study provides a comprehensive review of the literature on climate risk
insurance modeling to identify lessons learned and knowledge gaps to be addressed by future
research. Furthermore, this research conducts a stakeholder analysis of the European Union
insurance sector with risk assessment experts from insurance companies. The review finds that
insurance models estimate risk for different perils and simulate risk-related parameters for
insurance schemes, such as premiums and deductibles. Most forward-looking models indicate
that climate change and socioeconomic developments highly exacerbate future risk and increase
insurance premiums. Various studies recommend charging risk-based premiums to incentivize
disaster risk reduction (DRR) efforts that limit this increase in climate risks. Other findings point
toward introducing public-private insurance to cope with climate change and enhance risk
spreading by introducing insurance purchase requirements or insurance products that cover
multiple climate risks. Gaps that we identify in this literature review include an underrepresentation
of insurance assessments for developing countries and for hazards other than flooding.
Additionally, we note a lack of research into insurance for non-agricultural commercial sectors.
Furthermore, less than half of the studies take a forward-looking approach by incorporating climate
change scenarios, and an even smaller percentage consider socioeconomic development
scenarios. This limitation shows that current methods require additional development for assessing
the effects of future climate risk on insurance. We recommend that future research develops such
forward-looking models, considers using a more refined spatial scale, broadens geographical and
hazard coverage, and includes the commercial sector. Outcomes of the stakeholder analysis
identify current challenges in state-of-the-art climate risk assessment approaches and explore
innovative solutions to these challenges. Results reveal significant opportunities for incorporating
long-term and adaptive views of climate risk into insurance modeling and pricing. This involves a
deeper understanding of nonlinear environmental changes, fostering the development of replicable
catastrophe risk models, increased use of emerging technologies, and leveraging open-source
initiatives through increased intersectoral collaboration. By identifying these areas, the research
supports the design of new insurance products that can better address climate change-enhanced
risks. Future research directions based on the stakeholder analysis should focus on evaluating
implementation of proposed solutions in practice. Ultimately, this study aims to contribute to more
robust and adaptable insurance models, enhancing the resilience of the European Union in the
face of climate change.

Keywords

actuarial models, catastrophe models, climate change, insurance, natural disaster risk.
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1 Introduction

Climate change will increase the frequency and severity of natural disasters (IPCC, 2023). Future
risk will increase due to trends in climate extremes and socioeconomic developments like
urbanization and population growth. The number of natural disasters with high economic impacts
has tripled since the 1980s, and this trend is expected to continue into the future (Hoeppe, 2016).
With an increasing number of individuals residing in hazard-prone areas, the potential for losses
from climate-related events is anticipated to rise (IPCC, 2023). Natural disasters and future
climate risk lead to significant direct and indirect damage for society (Botzen et al., 2019).
Insurance can be a tool to soften this burden on society by compensating the losses to households
and private businesses (Linnerooth-Bayer & Hochrainer-Stigler, 2015). An efficiently working
insurance system accelerates recovery after a natural disaster, minimizes the damage to the
economy, and can improve the resilience of communities against natural disasters by incentivizing
disaster risk reduction (DRR) (Botzen, 2021). However, as of now, less than half of the global
natural disaster losses are covered by insurance (Munich Re, 2023), indicating a large protection

gap.

Designing an effective insurance system to cover losses from natural disasters is a complex task
(Surminski et al., 2016). A viable insurance system for natural disasters uses a multitude of
variables to optimize its operations, including the spatial and temporal pooling of risk (to spread
the risk through space and time), the combining the underwritten risk with other risks, and
premium-setting rules such as making insurance for certain risks mandatory. In addition, the
increase in natural hazards due to climate change (IPCC, 2023) and the increase in the exposure
of assets and people (Hoeppe, 2016) necessitate larger (future) capital requirements for insurers.
Consequently, this results in higher premiums for consumers, diminishing the appeal of purchasing
insurance, increasing the insurance coverage gap (Botzen, 2021). Other challenges for
developing a viable insurance system are the (often unexpected) high impacts of catastrophic
events (Kousky & Cooke, 2012). Furthermore, climate change is often not addressed in current
insurance schemes (Surminski, 2014), and there is much uncertainty in future climate risk
projections, which increases uncertainty in future premium settings (Adger et al., 2018; Botzen,
2021).

The modeling of climate-related risk insurance is an emerging research field to prepare the
insurance sector for the increasing natural disaster risk. By assessing how climate change may
stress the insurance sector, strategies can be developed to enhance the resilience of this sector
to increasing climatic risks. For example, insurance could stimulate risk-conscious decision-
making by policyholders, which may limit the impact of future climatic hazards. In light of the
necessity for policyholders to make decisions considerably in advance of climate change impacts,
it is imperative that the design of insurance policies embraces a long-term, future-oriented outlook.

A key foundation of a climate risk insurance model is accurately estimating current and future risk
through catastrophe modeling, actuarial approaches, or probability/theoretical methods. Over the
last 20 years, numerous climate hazard and risk models for different perils have been developed.
As a few examples, models for flooding such as Ward et al. (2013) and De Roo et al. (2000);
models for wildfires such as Filippi et al. (2009); models for hurricanes such as Bloemendaal et al.
(2020), Vickery et al. (2006), and Emanuel et al. (2006); or models for hail such as Brook et al.
(2021).

Funded by 7
the European Union




PIISA

Piloting Innovative Insurance

solutions for Adaptation D1.2 Advancements in actuarial risk modeling

In addition, a climate risk insurance model can be applied to assess the impacts of climatic risks
on how supply and demand for insurance develops over time and space. A commonly employed
model type for this purpose is an insurance supply model, which concerns the pricing of insurance
contracts by simulating (risk-based) premiums (e.g., Aerts and Botzen, 2011). On the demand
side, partial equilibrium models aim to simulate supply and demand in an insurance market or
consider the effect of insurance on equilibrium conditions between marginal cost and marginal
revenue for a business. In this way, it is possible to derive insights about insurance uptake (e.g.,
Tesselaar et al., 2020b) or how insurance can incentivize DRR (e.g., Hudson et al., 2016).
Recently, agent-based insurance models have been developed, which aim to simulate the
complex interactions in an insurance market between individual autonomous consumers, insurers,
and the government (Dubbelboer et al., 2017).

While recent research has reviewed climate insurance studies in a broad context (including
sustainability issues; e.g., Nobanee & Nghiem, 2024) there is no systematic review of climate risk
models for the insurance sector. Therefore, this paper primarily aims to review and synthesize the
current literature about climate risk models for the insurance sector. This process will identify the
key building blocks of such models, best practices, and lessons learned. Ultimately, this overview
will provide recommendations for future model development, which can aid in closing the overall
natural disaster protection gap. Since existing models are already used by the European Insurance
and Occupational Pensions Authority (EIOPA, n.d.; Tesselaar et al., 2020b) or the European
Central Bank (ECB & EIOPA, 2022), our review will offer valuable insights to policymakers and the
insurance sector about how to address future climate challenges and how to close the natural
disaster protection gap. This research will further examine real-world climate risk assessment
practices in the European insurance industry to identify challenges and areas for innovation. A
stakeholder analysis will be used for this purpose and to bridge the current theory-practice gap.

The remainder of this paper is organized as follows: Sections 2 and 3 describe how the review
and stakeholder analysis has been conducted, respectively. Section 4 reviews the literature by
summarizing our findings in three parts: general model types, the risk component, and the
insurance model component. Section 5 presents the findings of the stakeholder analysis
systematically based on a developed conceptual framework. Sections 6 and 7 discuss the main
research findings, policy implications and recommendations for future research according to the
literature review and stakeholder analysis. Section 8 concludes the paper.
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2 Methods of literature review

2.1 Paper selection

For this paper, a systematic literature review was conducted building on existing reviews (e.g.,
Aburto Barrera & Wagner (2023); Nobanee & Nghiem (2024)) by following three steps (Figure 1):
(1) selecting keywords for querying articles, (2) querying articles within a literature database
(Scopus), and (3) screening the queried articles for their suitability.

2.1.1 Keywords

For our review, we have addressed three keyword types: “hazard-related keywords,” “model
keywords,” and “insurance keywords.” Using combinations of the three keyword types in the query
with “AND” and “OR” Booleans ensures that only papers with abstracts that mentioned a hazard
type, a model type, and an insurance-related word were selected. This action was undertaken
with the intent of refining the query to encompass papers within the area of interest. However, to
make the query more exhaustive, the keywords were often kept a bit broader. For example, in the
hazard type keyword list, words such as “disaster” were also chosen. The selected keywords for
the hazard, model, and insurance types are summarized in Table 1 of the Appendix.

2.1.2 Query

The “advanced search” function by Scopus was used to query the articles. We used Scopus
because it was often used in similar literature reviews (Khatib et al., 2022; Nobanee et al., 2022;
Nobanee & Nghiem, 2024). First, the potential search strings were tried to obtain several articles
that were large enough to contain all the suitable papers but small enough to be feasible. Keywords
consisting of multiple words were put between quotation marks to make sure Scopus would only
look for instances where the entire keyword was present. The language was limited to English,
and the document type was limited to peer-reviewed articles. The query was carried out over the
title, abstract, and keywords of each article. The final query had 2,067 hits, which is comparable
to similar reviews such as Aburto Barrera and Wagner (2023). The search string used can be
found in the Appendix.

2.1.3 Screening

In the last step, the 2,067 articles selected by Scopus were screened using the Al-assisted
screening tool Rayyan (Johnson & Phillips, 2018). Since the review focuses on the state of the art
of insurance modeling, papers published before 2010 are excluded. Additionally, papers related
to index or parametric insurance contracts were excluded because these types of insurance are
deemed too dissimilar to the insurance under consideration in this study. After the manual
screening, 50 papers were deemed within our scope and selected for a thorough review. During
this process, 14 papers were deselected because they were out of scope, leaving 36 papers for
the final analysis. The final 36 papers were analyzed based on the type of the model (Table 2 of
the Appendix), the risk component of the model (Table 3 of the Appendix) and the insurance
component of the model (Table 4 of the Appendix).
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screening

Figure 1: Selection process

3 Methods of stakeholder analysis

For the stakeholder analysis, this paper develops a conceptual framework that will ensure
systematic analysis of the insights shared by experts in the field. This is followed by an elaboration
of the methodology. That is, first the sampling procedure for the expert interviews is motivated.
Second, the approach in which data is collected is clarified. Third and last, the systematic
approach to data analysis is described, which eventually shapes the results that follow from all
insights collected.

3.1 Conceptual framework

The three concepts of climate-related risk information, other model data inputs, and uncertainty
factors are considered in climate risk modeling. Climate-related risk information is dependent on
climate-related risk and climate data. Climate-related risk is a function of the hazard, the exposure
of the portfolio, and vulnerability factors. A double arrow is drawn from climate-related risk to
climate-related risk information as both affect the other, due to adaption and mitigation practices.
Additionally, information on changing climatic factors can be used to improve understanding of
the natural hazards and the impact that they might have, which is necessary to set accurate
parameters in the models. Furthermore, several other data inputs can be used to evaluate risks,
depending on the model type. These data inputs can include historical losses, which allow for
projecting trends of economic impact based on past hazard losses. For forward-looking models,
future data based on climate forecasting and projections can be incorporated. Additionally, socio-
economic factors need to be considered. For instance, population density, political decisions, or
high inflation potentially affect damage outcomes (Landreau et al., 2021). Third, uncertainty
factors reflect the unknown elements of climate change and natural hazard risk for which the
models try to account. These can be, for example, tipping points, which are critical thresholds
where small changes can lead to dramatic shifts in the climate system, or compound effects, which
refer to the interaction of multiple climate hazards that amplify the overall risk.
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Next, several types of climate risk models can be applied. Such models can be built in-house or
bought from an external vendor party. The latter can be attractive since external parties might
have more climate-related risk information and model-building resources. However, these models
are often less transparent. The following step results in model outputs, which can consist of
potential damage and risk distributions in the form of economic losses or natural hazard damage
scenarios (Botzen, 2021). Concluding, this information is used in insurance decision-making on
risk pricing, the development of insurance products, and long-term strategy of the insurance firm.
The type of insurance product naturally depends on the type of natural hazard it relates to. Also,
proper insurance products can foster the development and implementation of DRR measures by
encouraging risk awareness and providing capital for risk reduction measures (Jarzabkowski et
al., 2019).

The conceptual framework provides the basis for developing a deductive coding scheme around
which the interview data and results are systematically organised.

Type of Natural
Hazards [ Vulnerability ] [ Exposure ]

1 : [ ]

[ Climate-Related Risk ] [ Climate Data ]
Future Climate
Climate Change information alters the : : Projections and Socio-economic
T understanding of climate risk ‘ H]'Storlcal LOSSE:S J F t
Forecasts actors

Climate Change (Climate—Related Risk Other Model Data
Adaptation Strategies Information Inputs

|

i [ In-house Modelling vs. External Modelling }
3 t Climate Risk ‘

Modelling

‘ Uncertainty Factors ‘

A 4

[ Tipe of Model (e.g. CAT vs. actuarial) }

A 4

Type of insurance product depends on type of

natural hazard

Proper insurance products can incentivise

climate adaptation

i [ Risk Pricing } -3 [ v

i Insurance Decision- ‘
e *{ Insurance Produclts } -

Making
[ Long-Term Strategy }

Figure 2: Conceptual framework
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3.2 Sampling

To collect primary data from interviews, purposive sampling was used. Purposive sampling is a
form of non-probability sampling in which participants are selected based on their expertise
according to the research objectives. Participants are therefore chosen by judgment of the
researcher, as only a specific type of candidate can properly serve as a primary data source due
to the nature of the research objectives and the required expertise (Bell et al., 2019). The interview
participants in this study are all experts in natural hazard risk modeling, climate risk insurance,
and actuarial services in Europe. General role descriptions can be found in Table 5 of the
Appendix. Professional networks within the Piloting Innovation Insurance Solutions for Adaptation
(PIISA) project were leveraged to reach out to potential candidates. Also, participants were asked
to refer other possible candidates in their network with expertise on the topic. A third method of
participant recruitment was reaching out to potential participants on LinkedIn. Suitable candidates
were contacted after looking at their field of work and relevant experience. A total number of
sixteen participants were recruited for the interviews successfully.

3.3 Data collection

The data for this research was gathered through in-depth semi-structured interviews. This
approach allows for a flexible exploration of pre-defined questions while leaving room for further
exploration of unique experiences, viewpoints, or other themes. A total of twenty-four questions
were formulated with help from focused discussions and peer-review by experts in the field that
are connected to the PIISA project and institute of the lead researcher (Appendix). The questions
start by discussing the use of climate risk information in insurance modeling and product design.
Next, the questions cover model inputs, model outputs, the types of models used, and the
adoption of forward-looking climate models. Lastly, the uncertainties of natural disaster risk
modeling were discussed, as well as potential advancements in risk assessment approaches.

The interviews were conducted online during a period between the start of April and mid-May
2024, and lasted between 30 and 45 minutes. Prior to the start of the interview, confidentiality was
promised, and consent to record the interview was confirmed. A test pilot interview was conducted
in preparation of the expert interviews to test the materials and correct formulation of the
questions. In addition, an ethics check by the Research Ethics Review Committee (BETHCIE) of
the Faculty of Science at Vrije Universiteit (VU) Amsterdam was completed to ensure ethical
practices throughout the data collection process.

This research prioritizes ensuring the validity of its findings by adhering to the four key criteria
established by Whittemore et al. (2001): credibility, authenticity, criticality, and integrity. Credibility
and authenticity focus on accurately interpreting the meaning of the results and accurately
representing participant experiences. To mitigate threats to validity such as distortion, bias, and
inadequate representation of relevant constructs, the research employs several strategies. First,
anonymity was guaranteed to encourage participants to speak freely. Second, interpretations of
their experiences have been repeatedly confirmed with participants to ensure accuracy. Finally, a
neutral and objective approach was maintained throughout the research process. Criticality and
integrity are further ensured by thorough and objective interpretation of the data. As more data
was collected and few new insights emerged, the findings became more trustworthy as a point of
data saturation was reached.

Funded by 12
the European Union




PIISA

Piloting Innovative Insurance

solutions for Adaptation D1.2 Advancements in actuarial risk modeling

Moreover, an online focused discussion was held with approximately fifty stakeholders involved or
interested in climate risk modeling in April 2024 to understand in greater detail: (1) key perceived
uncertainties in natural disaster risk modeling — participants could select up to four uncertainties
(identified prior as key uncertainties) through a multiple-response question or could select an
“other” option. The non-other options were future climate conditions, future population and
economic growth, limited past data availability and difficulties of including adaptation dynamics;
and (2) what is needed to advance natural disaster risk modelling — participants could state five
needs in a multiple-response question or could select an “other” option. The non-other options
were scientific insights, methods that include adaptation dynamics, methods to deal with multi-
hazard risk, better ways of addressing model uncertainty and more refined risk maps. The
discussion aimed to assess how closely these stakeholder views aligned with the uncertainties
and methodological needs identified during the interviews.

3.4 Data analysis

The data analysis process for the interviews consisted of several stages. First, the audio
recordings of the sixteen interviews were used to transcribe the interviews. Transcribing the
interviews was necessary for the coding process, while it also presented an opportunity to review
the information that was given. During the transcription process, interpretations were made in
some cases to exclude pauses and filler words and to correct grammar. Before conducting the
data analysis, the first stage of Wright and Nyberg’s (2017) detailed reading of the collected data
was applied. During this process, emphasis was placed on familiarising with the initial qualitative
data, structuring the information, and cleaning the data. Next, all transcripts were imported into
Atlas.ti. This program facilitates consistent and organized coding of large amounts of qualitative
data. To systematically analyse the data, a preliminary coding scheme was developed deductively
based on the conceptual framework. Figure 3 presents the initial codes, including their grouping.

In accordance, one or more codes were applied to relevant data segments of the interview
transcripts. During the coding process, the coding scheme was continually revised and refined to
capture emerging themes and ensure consistency. For three overhead codes, namely “Hazard”,
“Uncertainties & Challenges”, and “Innovation Potential”, sub-codes were derived inductively,
inspired by the Gioia methodology (Gioia et al., 2013). A detailed description of this process can
be found in the Appendix. Types of hazards mentioned in the interviews were registered for context
purposes. In addition, topics concerning challenges and innovation potential that emerged during
the interviews required special attention as they are the focus of this research. Figure 4 presents
an overview of the sub-codes. After the first round of coding was completed, a second round of
coding was initiated to re-examine and re-analyse the codes and categories applied thus far. The
Appendix presents an example of the coding process of part of an interview.

Atlas.ti’s features were used to create a visual representation of code co-document networks and
code-occurrences. Visualising the data structure is pivotal for qualitative research design as it
facilitates increasing levels of abstraction by capturing relationships between groups and codes.
|dentified relationships were subsequently used to create a narrative and to interpret the
significance of outcomes in relation to the research question and existing literature (Gioia et al.,
2013; Miles et al., 2014).
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Figure 3: Coding scheme
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4 Results of literature review

The commonality among all papers in this review is that they compute an insurance premium
based on a climatic risk. In accordance with the 3 tables defined in the method section 2 (model
type, risk component, insurance component), the results section will review these three aspects.

4.1 Model type

Based on our review, we distinguish three methods of operationalizing risk assessment:
catastrophe modeling, actuarial modeling, and theoretical modeling. When the climatic hazard is
operationalized as a risk via either catastrophe modeling, an actuarial approach, or a
probabilistic/theoretical approach, the estimated risk can be used in an insurance model. We
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distinguish four types of insurance modeling: insurance supply models, partial equilibrium models,
agent-based models, and “other models,” which comprise model types that are less prevalent in
the literature. This section summarizes the findings about the three risk component types and four
insurance component types. Figure 5 indicates the number of papers per model type. For
information about the reviewed models, refer to Table 2 of the Appendix.

Model (n=36)
Risk Insurance
component component
! { v v Y {
Catastrophe Actuarial Theoretical Supply model P.Ell.';i?l Agent-based Other models
model (n=26) model (n=9) model (n=1) (n=12) nf; d‘gl' (;':‘1"0) model (n=6) (n=8)

Figure 5: Number of papers per model type
4.1.1 Risk model

Catastrophe models

In catastrophe modeling, risk is simulated by combining information on hazard impacts and
associated occurrence probabilities with the exposed elements at risk and their vulnerability
(Grossi et al., 2005). Often, hazard impacts and probabilities enable the construction of
exceedance probability curves, which illustrate the likelihood of a loss surpassing specific
threshold values. However, there are also more simplified catastrophe models that only combine
hazard footprints (e.g., flood extent, windstorm field, or areas subject to heatwaves) with exposure
data on buildings infrastructure to estimate risk without addressing the probability of such events
(Grossi et al., 2005). Most papers employ a catastrophe model because risk related to high-impact
low-probability hazards is impaired by a lack of available observed loss data due to this low
probability of occurrence. Hence, hazards such as flooding, hurricanes, and earthquakes are
mostly estimated via catastrophe modeling (e.g., Tesselaar et al., 2022; de Ruig et al., 2022; Aerts
& Botzen, 2011; Boudreault et al., 2020; Peng et al., 2014; Perazzini et al., 2022; but see Sidi et
al.,, 2017). An alternative rationale for the frequent use of catastrophe models is their ability to
flexibly accommodate future climatic and socioeconomic conditions. A potential drawback of
catastrophe modeling is that it requires an often computationally expensive multi-layered
approach with data on hazard probabilities, exposure, and vulnerability (e.g., Boudreault et al.
(2020), de Ruig et al. (2023), or Ermolieva et al., 2017). The resulting outputs of a catastrophe
model (loss or risk) can be plotted in a spatial manner using maps showing risk per pixel or per
administrative unit.

Actuarial models
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A subset of papers uses an actuarial base for their model. Instead of being simulation based as
with catastrophe models, actuarial models estimate risk based on actual events with loss data
(Boudreault et al., 2023). Actuarial models are mostly applied to windstorm (El-Adaway, 2012)
and wildfire hazards (Barreal et al., 2014; Brunette et al., 2015; Pinheiro & Ribeiro, 2013,
Thompson et al., 2015). Using empirical loss data, the risk can be estimated using econometric
methods such as regression models. Examples are Pinheiro and Ribeiro (2013), who used the
expected annual average burned area per municipality based on historical fire occurrences and
the annual average burned area and Barreal et al. (2014), who used regression models to estimate
wildfire risk based on socioeconomic, geographical, and climate-related variables. El-Adaway
(2012) showed that actuarial models can be combined with bootstrapping to enhance loss
observations; in this application, three datasets of 5,000 observations were created from 2,000
actual windstorm observations. An advantage of an actuarial approach is the possibility to
elucidate potential trends that do not yet have a physical understanding (Boudreault et al., 2023).
On the other hand, given the high-impact low-probability nature of climatic disasters such as
flooding, there is often a lack of historical data on these events to apply a statistical analysis (but
see Islam et al. [2021] for an actuarial model applied to flooding).

Theoretical models

One reviewed paper does not apply its model to a case study (Brunette et al., 2017). This model
treats risk as a simple stochastic variable. Therefore, the model does not simulate risk using an
underlying catastrophe model and is not based on empirical data. We classify this model as a
purely theoretical model, as there is no underlying risk model specified.

4.1.2 Insurance model
Insurance supply models

The most common insurance application is the insurance supply model. An insurance supply
model concerns the pricing of insurance contracts. An example of such a model is applied in Aerts
and Botzen (2011), which calculated the future evolution of risk-based premiums for flooding in
the Netherlands using a catastrophe model, considering several socioeconomic and climate
change scenarios. The premium was calculated per administrative area based on its expected
annual damage (EAD) divided by the number of houses per administrative area. This risk estimate,
together with a loading factor that represents the operational costs of providing insurance as well
as a profit margin, provided an estimate of the premium per household. Using this method, a stark
increase in insurance premiums over time was found due to climate change and socioeconomic
developments and the fact that the uncertainty around these future developments complicates
the insurers’ rate-setting of long-term contracts. Another example is Brunette et al. (2015), who
estimated premiums for multi-hazard forest insurance using an actuarial approach in combination
with an insurance supply model. With this method, it was found that the most efficient procedure
is to assume independence between the natural hazards, which in reality cannot be a fair
assumption, in particular in the case of compound events.

Most insurance supply models incorporate spatially explicit, risk-based premiums, relying on
catastrophe models or actuarial methods to assess spatial risk. Examples of models that employ
a model with spatially explicit, risk-based premiums can be found in Boudreault & Ojeda (2022),
Boudreault et al. (2020), EI-Adaway (2012), Kalfin et al. (2022), and Sacchelli et al. (2018).
Generally, the premium’s spatial resolution is limited by the complexity of the underlying risk
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module. Some models calculate premiums with a high spatial resolution, such as Boudreault et al.
(2020), in which premiums are calculated per individual house, aiming to explore methods for
mitigating adverse selection. Calculating risk-based premiums at a high resolution has the
advantage of accurately reflecting the risk of the area and potentially incentivizing DRR effort.
However, according to Botzen (2021), risk-based premiums can lead to unaffordability in high-
risk areas and may influence location decisions. This means that a pricing application alone is
often not enough to answer all insurance-related challenges. More intricate insurance applications
such as partial equilibrium models not only compute premiums but also leverage these premium
data in subsequent modules to, for example, obtain insights into insurance demand or DRR efforts.

Partial equilibrium models

Partial equilibrium models assess equilibrium conditions in a particular market, ceteris paribus
(Varian, 2014). There are no feedback effects that alter the fundamental supply and demand
relationships defined in advance (Mas-Colell et al., 1995). A partial equilibrium application is useful
for determining equilibrium outcomes in an insurance market or considering the effect of insurance
on equilibrium conditions between marginal cost and marginal revenue for a business.

By simulating insurance market conditions, insights about insurance uptake, such as the
uninsured portion of risk or the unaffordability of insurance, can be obtained. These insights are
showcased by studies on the European flood insurance market. An example is Tesselaar et al.
(2020b), who found that insurance unaffordability will increase due to climate change and
socioeconomic development by simulating premium prices and insurance demand for various
scenarios. Another area in which partial equilibrium applications prove useful is when the effect of
insurance on (agri) businesses is considered. For example, Brunette et al. (2017) analyzed the
effect forest insurance can have on the implementation of DRR efforts by examining the marginal
cost and benefit of insurance in different situations. Results showed that including DRR efforts in
forest insurance contracts is a beneficial tool to promote DRR efforts, especially if the type of DRR
effort is unobservable to the insurer. In a similar study, Barreal et al. (2014) examined the effect
of insurance on the net present value of forest investments by analyzing the equilibrium between
marginal DRR cost and benefit. Results showed that insurance plays a larger role in increasing the
net present value of forest investments when restoration costs are included in the insurance policy.
When insurance supply systems are considered, a partial equilibrium application can also be used
to compare different insurance supply systems on key characteristics such as premiums and
demand (Hudson et al., 2019; Tesselaar et al. 2020a, 2020b). Thereby, the model can be used
to obtain insights into the desirability of insurance market reforms through evaluating both their
supply and demand side effects.

Agent-based insurance models

Agent-based models (ABMs) subdivide complex systems into a flexible simulation framework of
individual autonomous, heterogenous, and active components (agents), which is useful for
investigating complex and emerging agent behavior (Crooks & Heppenstall, 2012). ABMs offer
valuable insights for climate risk insurance modeling by simulating the intricate interactions and
dynamic behaviors among consumers and insurers in the market, thus providing valuable insights
into (emerging) consumer behavior. It is noteworthy that all reviewed papers with an ABM
application consider flood insurance. One example is a study by Dubbelboer et al. (2017), which
applied an ABM to simulate U.K. housing market to assess the viability of the FloodRe scheme.
Another example is a study on the U.S. flood insurance system by de Ruig et al. (2022),

Funded by 18
the European Union




PIISA

Piloting Innovative Insurance

solutions for Adaptation D1.2 Advancements in actuarial risk modeling

investigated the societal benefits of risk-based premiums in a changing climate. The type of
consumer behavior that is modeled in ABMs usually comprises insurance uptake (Crick et al.,
2018; de Ruig et al., 2022, 2023; Dubbelboer et al., 2017; Jenkins et al., 2017;Tanaka et al.,
2022), implementing DRR methods (de Ruig et al., 2022, 2023; Crick et al., 2018; Dubbelboer et
al.,, 2017; Jenkins et al., 2017), and the decision to purchase property (Crick et al., 2018;
Dubbelboer et al., 2017; Jenkins et al., 2017; Tanaka et al., 2022).

The interactions in the ABMs depend on the modeled agents and the focus of the model.
Interactions are commonly modeled between consumers and the development of risk (de Ruig et
al., 2022, 2023) or impact (Crick et al., 2018; Dubbelboer et al., 2017; Jenkins et al., 2017) of a
flood event. In de Ruig et al. (2022) and de Ruig et al. (2023), households evaluate the risk of
flooding and base the decision to take DRR measures or insurance on the severity of the risk they
face. In studies by Dubbelboer et al. (2017), Jenkins et al. (2017), and Crick et al. (2018),
households base the decision of taking DRR measures on whether a flood event occurred.

Another common interaction addressed in ABMs is an interaction between households and the
insurance market. In studies by de Ruig et al. (2022) and de Ruig et al. (2023), households decide
each year whether to purchase insurance or not. This decision is linked to a subjective expected
utility function that takes the (risk-based) premium calculated by the insurance sector, the budget
of the household, and a deductible into account. In studies by Dubbelboer et al. (2017), Jenkins
et al. (2017), and Crick et al. (2018), households are mandated to take flood insurance but can
influence their premium by moving to another location or undertaking DRR measures. Tanaka et
al. (2022), Dubbelboer et al. (2017), Jenkins et al. (2017), and Crick et al. (2018) also modeled
an interaction between households and the housing market. In Tanaka et al. (2022), households
decide whether to move or not based on a utility function that considers flood risk reflected by the
insurance premium.

Allowing for individual agent behavior is useful concerning the implementation of DRR measures
(Crick et al., 2018; de Ruig et al., 2022, 2023; Dubbelboer et al., 2017; Jenkins et al., 2017).
Furthermore, de Ruig et al. (2022) and de Ruig et al. (2023) showed that modeling interactions
between consumers and the insurance market leads to useful insights about insurance uptake
and affordability. Another strength of an ABM is its suitability for integrating climate change and
socioeconomic development scenarios. This is also reflected in the fact that all reviewed agent-
based models include at least one climate change scenario. Moreover, since an ABM often
includes data on the characteristics of agents such as income, socioeconomic development
scenarios are often applicable (de Ruig et al., 2022, 2023; Tanaka et al., 2022). A typical caveat,
though, of these models is that the modeler can define virtually any type of rules for the agents to
follow, and hence ABM offers a powerful approach to diagnose and better understand
mechanisms underlying the model assumptions, but it is less effective in helping discovering
general patterns and mechanisms that are beyond the model assumptions.

Other insurance model types

There are two other insurance model types that can be distinguished in the literature. Birghila et
al. (2022) and Islam et al. (2022) employed an insurance demand model. The goal of an insurance
demand model is to obtain an insight into the demand for insurance. Birghila et al. (2022) did this
by analyzing the optimal risk layering of insurance contracts per recipient to maximize uptake
under ambiguity. Islam et al. (2022) analyzed the willingness to pay for insurance via a logit model
based on a field survey. Another insurance model type is a game theoretic model. A game
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theoretic model shares similarities with an ABM but places a greater emphasis on equilibrium
conditions and optimization (De Marchi & Page, 2014). Utilizing game-theoretic models proves
useful in capturing the dynamics between the demand and supply sides of insurance. This
framework offers valuable insights into the strategic choices made by both insurers and insurance
consumers. An example is Peng et al. (2014), who highlighted the existence of policies that include
retrofitting and make all actors (households, government, insurers, and reinsurers) better off than
a policy that does not include retrofitting. Game-theoretic models can serve as a valuable tool for
analyzing the wider implications of insurance, retrofitting initiatives, and the acquisition of high-risk
properties on overall losses, as discussed by Guo et al. (2022).

4.2 Risk

Risk can be subdivided into hazard, vulnerability, and exposure (IPCC, 2012), where the hazard
is defined as the frequency and intensity of the natural hazard, exposure as the presence of
exposed values, such as buildings, property, or crops that can adversely affected, and vulnerability
as the susceptibility of these exposed values to losses (Botzen, 2021).

This section reviews the modeling input referring to the risk component of the model. Details about
the risk component per reviewed paper can be found in Table 3 of the Appendix.

4.2.1 Hazard

In this paper, we identify five climatic hazard groups: flooding, wildfires, hurricanes, windstorms,
and other hazards.

Flooding is overrepresented in the literature, with more than half of the papers being applied to
flood hazards. We further divide flood hazards into three subcategories: riverine flooding (Aerts &
Botzen, 2011; Boudreault et al., 2020; Boudreault & Ojeda, 2022; de Ruig et al., 2022; Ermolieva
etal., 2017; Hudson et al., 2016, 2019; Moosakhaani et al., 2022; Sidi et al., 2017; Tanaka et al.,
2022; Tesselaar et al., 2020a, 2020b, 2022; Unterberger et al., 2019), coastal flooding (Aerts &
Botzen, 2011; de Ruig et al., 2022, 2023; Ermolieva et al., 2017), and other flooding (which
consists of pluvial flooding [Tanaka et al., 2022], surface water flooding [Crick et al., 2018;
Dubbelboer et al., 2017; Jenkins et al., 2017], flash floods [Islam et al., 2022], and flooding in
general [Perazzini et al., 2022]). Of these types, riverine flooding accounts for more than half of
the flood modeling papers. In some cases, a combination is used between riverine flooding and
another type of flooding (e.g., Aerts and Botzen, 2011; Ermolieva et al., 2017; Tanaka et al., 2022).
Moreover, coastal flooding is used in all but one case (de Ruig et al., 2023), in combination with
riverine flooding. Of the other hazard types, hurricanes/cyclones (Guo et al., 2022; Kesete et al.,
2014; Kunreuther et al., 2013; Peng et al., 2014; Walker et al., 2016) and wildfires (Barreal et al.,
2014; Brunette et al., 2015; Pinheiro & Ribeiro, 2013; Sacchelli et al., 2018; Thompson et al.,
2015) occur the most. To a lesser extent, there are models about windstorm insurance (EI-
Adaway, 2012; Loisel et al., 2020; Sacchelli et al., 2018). The group “other hazards” consists of
forest-related damages (Brunette et al., 2015, 2017), earthquakes (Perazzini et al., 2022), debris
flows (Ding et al., 2012), drought (Birghila et al., 2022), and natural disasters in general (Kalfin et
al., 2022).

Most of the reviewed papers tend to employ models that exclusively focus on addressing individual
natural hazards. A few examples of models that allow for a multi-hazard approach are models by
Brunette et al. (2015) and Sacchelli et al. (2018). These are both forest insurance papers.
Perazzini et al. (2022) explicitly used both a single-hazard and a multi-hazard insurance policy in
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their case study. The low attention to multi-hazard insurance indicates a gap in the climate
insurance modeling literature: Compound climate risks are increasing rapidly, and an expanding
literature focuses on multi-hazard climate risk assessments (IPCC, 2023), but multi-hazard risks
are not often considered in climate insurance models.

The way in which the hazard is operationalized varies by hazard group and risk model type. For
flooding, the hazard is commonly determined as the inundation extent with a certain return period
in a certain grid cell or area (Aerts & Botzen, 2011; Boudreault & Ojeda, 2022; Crick et al., 2018;
de Ruig et al., 2022, 2023; Dubbelboer et al., 2017; Hudson et al., 2016, 2019; Jenkins et al.,
2017; Tanaka et al., 2022; Tesselaar et al., 2020a, 2020b 2022). This means that inundation
depths are linked to a certain probability each year per grid cell or area. This probability and
inundation depth can then be used in combination with exposure and vulnerability data to estimate
the expected annual damage. Concerning hurricanes, Guo et al. (2022), Kesete et al. (2014), and
Peng et al. (2014) all used a set of probabilistic hurricane scenarios based on historical records
first developed by Apivatanagul et al. (2011). These hurricane scenarios comprise a track with
certain parameters that determine the intensity and probability of occurrence. Kunreuther et al.
(2013) similarly used hurricane scenarios but developed by a climate-catastrophe modeling
approach. For wildfires, the hazard is usually determined as a probability per area based on
historical wildfire occurrence (Barreal et al., 2014; Pinheiro & Ribeiro, 2013; Sacchelliet al., 2018).
These probabilities are more often denoted by region rather than grid cell, in contrast with flooding.
Similar to the assessment of wildfires, the evaluation of windstorm hazard usually relies on
historical data analysis (EI-Adaway, 2012; Sacchelli et al., 2018; but see Loisel et al. (2020), which
uses return periods).

4.2.2 Exposure

For flooding, exposure is commonly operationalized via data about land use (Aerts & Botzen,
2011; Boudreault et al., 2020; Crick et al., 2018; de Ruig et al., 2022, 2023; Dubbelboer et al.,
2017; Ermolieva et al., 2017; Hudson et al., 2016, 2019; Jenkins et al., 2017; Tanaka et al., 2022;
Tesselaar et al., 2020a, 2020b, 2022; Unterberger et al., 2019). However, there are differences
in the resolution of this approach. For example, while it is common to use aggregated information
about land use, Boudreault et al. (2020) used data for single houses, including characteristics
such as number of floors and main usage. Furthermore, forward-looking models often include GDP
growth and population growth as a proxy for the growth in exposure (Aerts & Botzen, 2011; de
Ruig et al., 2022, 2023; Hudson et al., 2016, 2019; Tanaka et al., 2022; Tesselaar et al., 2020a,
2020b, 2022; Unterberger et al., 2019).

In hurricane-focused insurance models, there is a heavier focus on residential buildings than in
insurance models for flooding. Hence, the approach is less land use-based and more focused on
the buildings themselves. Exposure can be aggregated by building class (Guo et al., 2022; Kesete
et al.,, 2014; Peng et al., 2014) or be based on the value of assets in an insurance portfolio
(Kunreuther et al., 2013) or the value per building (Walker et al., 2016).

Papers considering wildfire insurance models are mostly forestry related. This means that
exposure input data for these models are related to forest stand value (Barreal et al., 2014,
Brunette et al., 2015, 2017; Sacchelli et al., 2018). It is common to relate this value to the age of
the forest stand.
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Concerning windstorm insurance models, the approach is similar to wildfire insurance models, as
both categories are mostly applied to the forestry sector (Brunette et al., 2015; Loisel et al., 2020).

4.2.3 Vulnerability

For flooding, vulnerability is commonly depicted by depth-damage curves (Aerts & Botzen, 2011;
Boudreault et al., 2020; Boudreault & Ojeda, 2022; Crick et al., 2018; Dubbelboer et al., 2017;
Ermolieva et al., 2017; Hudson et al., 2016, 2019; Jenkins et al., 2017; Tesselaar et al., 2020a,
2020b, 2022; Unterberger et al., 2019). A depth-damage curve relates inundation depth to
monetary damage (Huizinga et al., 2017). In this manner, vulnerability can be operationalized by
assigning distinct depth-damage curves to various buildings or land-use categories. For riverine
and coastal flooding, protection standards such as dykes and levees are often considered (Aerts
& Botzen, 2011; Hudson et al., 2016, 2019; Tesselaar et al., 2020a, 2020b, 2022; Unterberger
etal, 2019).

Concerning hurricanes, Kunreuther et al. (2013) differentiated between two vulnerability
conditions, one with risk limitation standards compliant with local building codes and one with the
current observed risk limitation standards. Similarly, (Walker et al., 2016) differentiated between
two vulnerability conditions: current practice and more stringent design. Other examples include
modeling the building resistance level as a parameter and dividing buildings into classes based on
location and category (Guo et al., 2022; Kesete et al., 2014; Peng et al., 2014).

Since wildfire insurance models are mainly targeted to forestry insurance, modeling input
concerning vulnerability to wildfires is also mostly targeted to forestry practices. One way in which
vulnerability is translated for the forestry sector is as a forest management parameter. This
parameter stands for the level of preventative measures that are taken and is inversely related to
the risk (Barreal et al., 2014). Another paper makes use of empirical vulnerability functions based
on the age class of the trees and the probability of destruction (Brunette et al., 2015).

Similar to wildfires, windstorm vulnerability is also mainly targeted to forestry insurance. The
empirical vulnerability functions in Brunette et al. (2015) are also applied to windstorms.
Concerning trees, the effect of age on vulnerability is more apparent for windstorms than for
wildfires (Loisel et al., 2020). Loisel et al. (2020) operationalized this vulnerability by examining
age-dependent tree characteristics, specifically diameter and height. They posited that an
increase in the percentage of damaged trees occurs when these characteristics attain higher
values.

4.2.4 Location

There is only one paper that did not apply its model to a location-based case study but rather
considered a generic forest and forest owner (Brunette et al., 2017). More than half of the
reviewed papers applied their model to a case study that occurs in Europe (e.g., Barreal et al.,
2014; Birghila et al., 2022; Dubbelboer et al., 2017; Hudson et al., 2019; Loisel et al., 2020;
Sacchelli et al., 2018; Tesselaar et al. 2022; Unterberger et al., 2019). Of the remaining papers,
most of the case studies take place in the United States (e.g., de Ruig et al. (2022), EI-Adaway
(2012), Guo et al. (2022), Kesete et al. (2014)). A few papers feature a case study in Asia (e.g.,
Ding et al., 2012; Sidi et al., 2017; Kalfin et al., 2022; Islam et al. 2022). Boudreault & Ojeda
(2022) and Boudreault et al. (2020) conducted a case study in Canada. Walker et al. (2016)
applied their model to a case study in Australia. The predominant pattern here is that climate risk
insurance models are most often applied to western and developed countries compared to less-
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developed countries. For instance, no model is applied to Africa or South America, which are
areas that are more vulnerable to climatic hazards (IPCC, 2023) and might, therefore, benefit from
insurance coverage. A possible explanation for the lack of case studies in these regions is the
requirement of high-level input data, which are often harder to acquire in less-developed countries.
Innovations in the usage of satellite imagery might offer a solution for this problem (Islam et al.
(2022). For non-forestry applications, El-Adaway (2012) used actual loss events to link the
expected loss to a geographical location.

4.2.5 Scenarios

Models that are forward-looking use projections of how the risk develops over time. This is often
done by using a climate change scenario in the risk component of the model. Due to the
uncertainty of climate change, it is common to use multiple climate change scenarios in estimating
future natural disaster risk.

About half of the reviewed papers can be classified as forward-looking. These papers considered
at least one climate change scenario in their approach. The scenarios considered are often the
Representative Concentration Pathways (RCPs). RCPs are radiative forcing trajectories until 2100
for different climate change scenarios, ranging from 2.6 to 8.5 W/m? (van Vuuren et al., 2011).
These trajectories can be employed to simulate future climate conditions in a model and, if multiple
RCPs are used, compare the model under different climate change scenarios. If multiple climate
change scenarios are employed, such as a low RCP and a high RCP, it becomes possible to set
a lower and upper bound on the possible outcomes of a model, capturing the uncertainty around
climate change. There are, however, several papers that can be considered forward-looking but
only employ one climate change scenario.

More than half of the papers that applied a climate change scenario to their model also applied a
socioeconomic development scenario. There are no instances where only a socioeconomic
development scenario is applied. The socioeconomic development scenarios often used are the
Shared Socioeconomic Pathways (SSPs). SSPs describe different socioeconomic development
trajectories such as sustainable development and fossil-fueled development (Riahi et al., 2017).
The SSP2 (middle of the road) and SSP5 (fossil-fueled development) scenarios are often paired
with the RCP4.5 and RCP8.5 scenarios, respectively, as they have similar traits (e.g., de Ruig et
al. (2022), and Tesselaar et al. (2020a)). Another way in which socioeconomic development
scenarios are being used is in the form of simulating future land use (for example, Tesselaar et al.
(2022) or Aerts and Botzen (2011)). Tanaka et al. (2022) incorporated income and house prices
that increase over time, reflecting a constant economic growth rate.

4.2.6 Disaster risk reduction (DRR)

DRR measures to reduce climate risk are often accounted for. More than half of the reviewed
papers include some form of DRR. Often, these papers employ a forward-looking model by means
of a climate change scenario, as modeling DRR measures is especially interesting for forward-
looking models.

In reality, DRR is usually financed by governments and consumers of insurance. Of the papers
that included DRR, most did so for DRR financed by households (e.g., Hudson et al., 2016; de
Ruig et al., 2023; Tesselaar et al., 2022) or by both households and the government (e.g., Peng
et al., 2014; Jenkins et al., 2017; Guo et al., 2022). A subset of the reviewed papers included DRR
measures financed by agribusinesses, such as Barreal et al. (2014), Birghila et al. (2022), or
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Brunette et al. (2017). Furthermore, Aerts and Botzen (2011) and Unterberger et al. (2019)
considered DRR financed by only the government. Models that consider insurance against
wildfires and/or storms generally did not include DRR (but see Barreal et al. (2014)). However,
DRR measures against these hazards do exist (Manocha & Babovic, 2017; Paveglio et al., 2018).

When a premium is risk-based, investing in DRR measures can potentially lower this premium.
This not only incentivizes proactive risk management but also promotes broader societal
engagement in resilience-building efforts. This ultimately fosters a more economically viable and
secure environment for both insurers and policyholders. An important question is how insurance
arrangements can incentivize investment in risk reduction measures (Botzen, 2021). The idea of
using insurance to stimulate DRR is explored in multiple papers and across hazard type (e.g.,
Brunette et al., 2017; Hudson et al., 2016; Jenkins et al., 2017; Peng et al., 2014). For example,
Hudson et al. (2016) showed that correctly incentivizing DRR via insurance can lead to a reduction
in household flood risk of 12% in Germany and 24% in France by 2040.

4.3 |Insurance

This section summarizes findings about the insurance component of the model. Details per
reviewed paper can be found in Table 4 of the Appendix.

4.3.1 Recipient and the decision to insure

About two-thirds of the reviewed studies concerns insurance for households. Two papers included
insurance for households in combination with insurance for another entity; Moosakhaani et al.
(2022) used a model where both households and the government are insured, and Ermolieva et
al. (2017) used a model where households and firms are insured. Furthermore, some papers
modeled insurance for structures such as civil infrastructure developments (El-Adaway, 2012;
Unterberger et al., 2019) or insurance for buildings in general (Sidi et al., 2017). Multiple papers
modeled agricultural insurance, of which two papers concerned some form of crop insurance
(Birghila et al., 2022; Islam et al., 2022), and six papers focused on insurance for forestry (Barreal
et al., 2014; Brunette et al., 2015, 2017; Loisel et al., 2020; Pinheiro & Ribeiro, 2013; Sacchelli et
al., 2018). While agricultural insurance can be considered as insurance for firms, Ermolieva et al.
(2017) is the only paper that considered insurance for general firms alongside households by using
land-use maps.

Models that are not only supply-focused also often incorporate a consumer decision component.
This decision component indicates, if applicable, the way in which the decision to purchase
insurance is made. Insurance uptake can be summarized into two categories: mandatory uptake
and voluntary uptake. Concerning mandatory uptake, the premium can be risk-based when a
solidarity market structure is concerned (Hudson et al., 2019; Tesselaar et al., 2020a, 2020b,
2022). There are also examples of papers that use mandatory uptake but do connect the premium
to the risk. These papers either assume that all constituents purchase insurance (Aerts & Botzen,
2011; Crick et al., 2018; Dubbelboer et al., 2017; Jenkins et al., 2017) or a given percentage of
households (Tanaka et al., 2022). For voluntary uptake, the decision to insure is based on
expected utility maximization. In this way, the insurance recipient (commonly households) makes
the decision based on a (subjective) utility curve. In essence, the insurance recipient determines
whether acquiring insurance provides greater value than not obtaining insurance by weighing the
prospective loss against the premium payment. The way in which this decision method is
employed varies mostly in the degree of rationality that is assumed. In Kesete et al. (2014), the
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insurance recipient is assigned a risk aversion coefficient based on the risk region but has no
specific rationality constraint. This differs from the model employed by, for example, Hudson et al.
(2019) and Tesselaar et al. (2020b), where a subjective expected utility framework is used. The
subjective expected utility framework incorporates variations in risk perception from the objective
risk to account for bounded rationality. Subjective expected utility is also used in studies by de
Ruig et al. (2022) and de Ruig et al. (2023), where households are assumed to overestimate their
risk after a flood event and underestimate their risk after a period of no floods. Other models that
make use of an expected utility curve but do not include a rationality constraint can be found in
studies by Ding et al. (2012), Peng et al. (2014), and Brunette et al. (2017).

4.3.2 Insurance sector modeling

Climate risk insurance is organized differently across countries and hazard types (Le Den et al.,
2017). Moreover, insurance can be arranged privately, publicly, or a combination of the two
(Hudson et al., 2019).

Insurance supply models predominantly concentrate on the pricing aspect of an insurance
contract and typically omit explicit consideration of the insurer as an agent (e.g., Boudreault et al.,
2020; Brunette et al., 2015; Sacchelli et al., 2018). More often, the insurer as an agent is
incorporated, but only one representative insurer is assumed to exist (e.qg., Kalfin et al., 2022;
Birghila et al., 2022; Kesete et al., 2014). Not including an insurer as an agent or assuming the
insurer to be a single agent is a common modeling assumption. This assumption is also frequently
employed in models focused on insurance demand (e.g., Birghila et al., 2022; Islam et al., 2022).
An alternative format involves modeling an insurance market wherein a public entity assumes the
role of providing insurance, as opposed to a private company. This approach is frequently
employed in partial equilibrium and agent-based models, where multiple market forms are
simulated and considered (e.g., Crick et al., 2018; Hudson et al., 2019; de Ruig et al. 2023).

Another representation of the insurance sector is delineating the insurance component as a
public-private market, wherein the government assumes the role of a risk-neutral reinsurance
agent providing support to insurers (e.g., Perazzini et al., 2022; Hudson et al., 2019; Aerts and
Botzen 2011) or a publicly organized insurance market in which a public agent provides insurance
instead of a private company (e.g., Crick et al., 2018; de Ruig et al., 2023).

Certain models offer an evaluation of the effectiveness of diverse insurance structures, spanning
from private to public configurations. Hudson et al. (2019) evaluated six different insurance
systems in the EU on their ability to cope with trends in flood risk and found that introducing
elements of public—private partnerships can improve the affordability of insurance. In a study
conducted by Unterberger et al. (2019), three distinct insurance systems are analyzed with regard
to their fiscal impact on forthcoming governmental budgets and the associated variability in
disbursements for public infrastructure insurance. As another example, Kunreuther et al. (2013)
differentiated between hard and soft insurance market conditions to evaluate how the supply
system for hurricane insurance behaves under these different conditions. In a similar fashion,
Tesselaar et al. (2020a) analyzed the effect of climate change on premiums, affordability, and
insurance uptake in soft and hard reinsurance conditions.

A select number of models integrate the consideration of insurer competition, each employing
distinctive methodologies in their approach. One model type that is well suited for modeling
competition is the game-theoretic model type. For example, Guo et al. (2022) simulated multiple
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insurers that participate in a perfect information Cournot-Nash noncooperative game to calculate
the premium. Another way in which competition is considered is by assuming Bertrand
competition among the insurers. This is done by omitting a premium profit margin (e.g., Hudson
etal., 2019; Tesselaar et al., 2022; Tesselaar et al., 2020a; Kalfin et al., 2022), indicating that the
insurers cannot earn a high profit due to the market being competitive. A general observation is
that none of the reviewed ABMs explicitly model competition among insurers. Most ABMs either
use a public insurance agent (de Ruig et al., 2022, 2023) or assume only one insurer in the model
(Crick et al., 2018; Dubbelboer et al., 2017; Jenkins et al., 2017). Tanaka et al. (2022) employed
an ABM that does not include an insurer as agent but uses a given insurance premium.

4.3.3 Premium calculation

Insurance premiums are often computed using various methodologies such as a solidarity system
or capped premiums via a public-private partnership. However, the most prevalent approach is
the usage of risk-based premiums. This type of premium is designed to mirror the inherent risk
associated with the insured entity. The utilization of risk-based premiums holds significance, as it
facilitates alignment between premium revenue and projected indemnity disbursements, thereby
contributing to the financial viability of an insurance scheme. Furthermore, the deployment of risk-
based premiums serves as a means to convey information pertaining to risk, as evidenced by the
studies conducted by Botzen and van den Bergh (2009) and Kousky and Kunreuther (2013).
Additionally, these premiums can serve as a mechanism to incentivize the implementation of DRR
measures, as elucidated by Botzen and Van Den Bergh (2009).

Examples of models that use risk-based premiums for wildfires can be found in the study by
Sacchelli et al. (2018). Examples of models that use risk-based premiums for hurricanes are those
by Kunreuther et al. (2013) and Walker et al. (2016). Alternative methods for computing insurance
premiums include the application of the distortion premium principle, as proposed by Birghila et
al. (2022). Another approach involves representing the premium as a random variable, a concept
explored by Sidi et al. (2017). Additionally, a quantile-based methodology, as outlined by
Ermolieva et al. (2017), offers an alternative perspective on premium calculation. In some models,
premiums are determined via aggregated risk in a solidarity market (e.qg., Hudson et al., 2019;
Tesselaar et al., 2020b).

Studies addressing multiple insurance supply systems frequently employ diverse methodologies
in premium calculation. An illustration of this multifaceted approach is evident in the work of
Hudson et al. (2019), where premiums are determined through various models. These models
encompass scenarios where premiums are unrelated to risk, fully risk-based, or risk-based with
animposed cap. A similar instance is illustrated in the research conducted by de Ruig et al. (2022),
where the determination of premiums varies across several approaches. These include premium
calculations based on outdated risk maps, fully risk-based assessments, computations grounded
in updated risk maps following a flood event, and premiums derived from periodically updated risk
maps. The adoption of diverse premium calculation methods proves to be a valuable strategy,
facilitating comparisons among distinct market types or risk assessment methodologies. This
comprehensive approach contributes to novel insights within the field of climate risk insurance
modeling. As an example, by performing a multi-criteria analysis on different insurance market
types, Hudson et al. (2019) found that a public—private partnership system can reduce the
unaffordability of insurance by performing a multi-criteria analysis on different insurance market

types.
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5 Results of stakeholder analysis

The elements of the conceptual framework served as the initial structure around which the results
have been organized. This section consists of three parts. First, it begins by outlining the context
of climate risk assessments within the EU insurance industry. Second, uncovered uncertainties
and challenges are highlighted. Last, potential innovation opportunities that emerged from the
stakeholder interactions are elaborated upon. All the parts are paired with supporting quotes.

5.1 Context setting

This analysis begins by examining common insurance products relating to climate risk. Next, it
explores how climate data is utilized. The analysis then extends to other model data inputs,
including historical losses, projections, and socio-economic factors. Finally, the focus shifts to
strategic insurance decision-making.

5.1.1 Insurance products

From the interviews, it became evident that climate risk assessments are mainly relevant for
property-related impact and non-life insurance. One participant explains: “It's mostly related to
Property and Casualty (P&C) business because natural perils have material or property related
impact.” Property risks encompass any type of physical damage. For instance, damage to
buildings due to floods and earthquakes was mentioned in fifteen and eight interviews, respectively
(out of sixteen interviewees). Interestingly, forest risks associated with storms and insect
infestations were mentioned twice.

Beyond property-related impact, business interruption emerged as a recurring theme in eleven
interviews, highlighting its importance in insurance coverage for natural hazards: “We look into
different things. The first one is the damage to buildings, damage to facilities, damage to machines.
This is straightforward damage to our end customers. We are also looking into the impact on
supply chains that have to do with business interruptions.”

The interviews revealed a variation of clients, with participants offering full property coverage for
commercial, public, and individual clients, only commercial clients, or commercial and public
clients. One participant’s quote effectively summarizes the key applications of climate risk
assessments in insurance products: “We use it for all property insurance, motor, and homes. Both
residential, commercial, industrial, and agricultural. It covers buildings and their contents, but also
business interruptions. We also use climate/natural hazard risk information with business lines that
are exposed like marine and aviation transport and for engineering risks and construction risks.”

5.1.2 Climate-related risk information
Hazard

Understanding the range of hazards is crucial for developing a comprehensive understanding of
climate risk assessments. Figure 6 illustrates the frequency of hazards mentioned during the
interviews. The numbers indicate the number of times each hazard was discussed in separate
interviews. Flooding was mentioned in all but one interview, making it the most prevalent natural
hazard. It became apparent that there are several types of floods that require specific modeling
approaches due to varying root causes: “You have fluvial floods, which comes from rivers. Pluvial
flood, which relates to precipitation risk. Storm surge, which is when the water level rises because
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of wind. Then you have flash floods, which is a city problem. You can also have dam breaks and
glacial outbursts.”

After floods, windstorm risk was highlighted most frequently and emphasized by one participant
as the largest risk in the Netherlands. Wildfire, hail, and earthquake risks were subsequently
underscored. Interestingly, hail was often discussed in conjunction with both motor vehicle and
greenhouse damage.

o Hazard: Windstorm... I 10
o Hazard: Wildfire... I O
® Hazard: Volcano... I 1
® Hazard: Tsunami... I 1
® Hazard: Tropical Cyclone... I 5
® Hazard: Storm... I 4
® Hazard: Solar radiation... HEEEE 1
o Hazard: Lighting (convenction storm)... I 3
® Hazard: Insect Damage... I 2
® Hazard: Heat... NG 3
® Hazard: Hail... I S
® Hazard: Flooding... I 15
e Hazard: Earthquake... I 2
e Hazard: Earth Slide... I S
e Hazard: Drought... I
® Hazard: Cold... NG 3
o Hazard: Biodiversity... I 3

Figure 6: Frequency of hazards mentioned

Exposure

The second element in the risk equation is exposure. Exposure refers to the value and risk profile
of insured property. The discussions revealed that exposure data is used as an input to the models:
“The model reads an input, which is a monetary input. This is your total exposure. It gives a
distribution of the percentage of that exposure that is at risk, given different thresholds of
probabilities.”

The importance of understanding an insured property’s exposure and its future development is
essential. Participants highlighted the value of enhancement techniques for improved exposure
data comprehension, recognising that models perform better with better-calibrated data.
Specifically, geocoding was mentioned three times: “Creating a modeling output goes with
knowing where your risks are located, which is the geocoding. Information on the location of assets
is intersected with what kind of perils they're exposed to. [...] The better your geocoding and the
better the information on the type of structure, the more accurate your model becomes.”

Depending on the type of hazard, exposure data needs to be granular enough to determine the
expected portion of the total limit an insurer is at risk with.

Vulnerability

Beyond exposure, vulnerability determines how the hazard translates into losses. The interaction
of hazard and vulnerability yields a destruction rate as a fraction of the total value, which is then
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applied to the exposure. Consequently, having a good understanding of both an area's
vulnerability and the vulnerability of specific insured clients is crucial, as was highlighted in seven
interviews. One participant illustrates: “A vulnerability function translates, for example, wind speed
or hailstone size into the mean damage ratio for a certain area or a postcode.” In another interview,
this was elaborated upon: “The vulnerability model looks at your portfolio and how, for example,
a hailstone or a windstorm impacts a wooden structure versus a concrete structure.”

Risk models can incorporate data on certain protective measures in the built environment that
reduce vulnerability if this information is provided by a broker or client.

Climate data

To model a potential loss distribution, the development of frequency and severity of a hazard needs
to be well understood. Public data plays a vital role in hazard modeling, with openly available
information from public entities and research institutes serving as the foundation. An important
distinction needs to be made: “We have short-term horizon weather data from different data
providers. But when we talk about climate change, it's a medium to long time horizon. There are
different research institutions currently working on it. So that's why we get data at different levels.
Sometimes it's from IPCC, so the international level. Sometimes we get the data from a local
institute in different geographies.”

Weather institute data appears to be a frequently utilized source to obtain short-term
meteorological and hydrological data. In addition, eight participants mentioned how climate
change data is gathered on various climate parameters through reports by the IPCC. Expertise is
also leveraged through collaboration with research institutes and commercial entities, as one
participant highlights: “Our science team works on models for climate change with universities in
Europe, sometimes in the USA. Besides, we sometimes use data provided by commercial
companies. [...] Airbus, for example, is a good company. They produce satellite data. We can use
this to see what, for example, the drought evolution is, pictured by soil moisture.”

Acquiring satellite data is further streamlined as openly available for utilization: “They’ve created
structured processes to download satellite data from free open-source satellites, like ESA and
NASA Science. They've got a whole platform dedicated to quickly being able to download that
data.”

By combining data from public entities, research institutions, and commercial companies, insurers
aim to build hazard models that reflect the evolving climate as accurately as possible.

5.1.3 Other model data inputs

Historical losses

Analysing past events is crucial for understanding the frequency and severity of natural hazards.
By incorporating and analysing historical claim data categorized by risk maps, insurers can build
and validate model parameters that effectively predict potential loss distributions in the event of a
natural disaster. One participant explains: “The company has recorded weather, climate, and
hazard data and claims worldwide. | think it started in the 60s, so they have a detailed long-term
history of data they can use for that.”

Less frequent hazards require longer historical datasets for a more accurate understanding of the
risk profile. While historical loss data provides a valuable foundation for natural disaster risk
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modeling, climate change may cause past events to be less representative of current and future
risks. To address this limitation, two participants address techniques like detrending to remove
long-term trends from the data, isolating the present risk profile: “We detrend the climate data so
that we know that we're looking at data that's now, and not taking into account maybe a less risky
history.”

Furthermore, the future is factored in. Another participant highlights: “Historical data is detrended
based on scientific research. If you look for example at hurricane models, they are based on
historical data, but they are updated every year based on the data, the context, and the weather
conditions.”

Forward-looking data

Incorporating scientific forecasts and future projections of climate scenarios allows insurers to
develop better forward-looking models. However, the interviews revealed an equally divided
approach among participants regarding the use of these techniques. Forecasts, which extrapolate
from historical data, offer a more predictive element, making them valuable for pricing purposes
and short-term risk assessments. One participant explains: “Climate forecasts are based on the
best understanding of what the situation is now and try to go forward with it. With the scenarios
that the IPCC generates, which are different from forecasts, it can be a + 1,5 degrees world or a
+4 degrees world. | would say in that sense, climate forecasts are the ones that influence the
insurance industry more than the scenarios. [...] because a forecast starts from the current
situation and environment to show how it will evolve. Depending on what IPCC scenario proves
to be true, the basis of the forecast changes.”

Climate projections, on the other hand, are more often used when looking at long-term climate
risks, particularly those concerning assets. These scenarios, which look twenty, thirty, or more
years ahead, allow insurers to see how climate change will affect the risk in the longer run due to
their ability to capture non-linear climate effects that might be more severe than a linear
extrapolation of historical trends: “In my view, the projection models are more appropriate because
with historical trends, it's always dangerous and difficult to extrapolate them into our future pattern.
[...] I think with projections you've got a better understanding because we see that climate change
is developing faster than what the historical trends might suggest.”

The projections mostly seem to be based the Representative Concentration Pathways (RCPs),
which were cited seven times: “We use different scenarios of the RCP. RCP 8.5 for the worst-case
scenarios. We use the 4.5 as a benchmark. Sometimes we also use the optimistic 2.5, but we use
that less often because our job, unfortunately, is to alert our client.” Another participant confirms:
“Mostly if you are using RCP, you are using RCP 4.5 and 8.5. 2.6 is very optimistic and no one
uses 6.0 that much. They say that 4.5 is most common, 8.5 is very pessimistic.”

Nevertheless, eleven participants brought up that the non-life insurance contracts have a horizon
of one year, which is why long-term projections are not top of the agenda of insurance companies.
Short-term volatility is not driven by average annual warming. Instead, intra-annual fluctuations
play a more significant role: “We are only talking about intra-annual variability that might be driven
by whether next year is going to be an El Nifio or a La Nifia year, or in what mode the North Atlantic
oscillation is. These are very different questions about climate. [...] That huge volatility you see
you on year are the things that insurers are interested in, more so than the background warming.”
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Although forward-looking climate models are not yet widely integrated due to the short-term focus
of many insurance products, these models hold significant potential for promoting DRR strategies
and putting pressure on, for instance, governments.

Socio-economic factors

Although socio-economic factors were thought to be an input factor to the risk models, most
participants excluded them entirely. Yet, one participant indicated the following: “We are using
estimates of future climates under the assumptions of future human-related activities such as
socioeconomic and technical development.” Nevertheless, socio-economic circumstances seem
more of a consequence rather than an input, which depends on geographies, population, and the
protection gap: “The impact of climate change is not distributed equally to people. | believe that
the impact of vulnerable people is more important than the middle and upper class. This needs
some actions from governments to not act and react too late. We need to understand that the
impact to different countries and different populations are different.”

5.1.4 Climate risk models

Climate risk assessments are generally modeled through Natural Catastrophe (Nat Cat) models
that incorporate hazard, vulnerability, and exposure data to generate event-loss tables using a
stochastic approach. A participant highlights the complexity: “If you want to know the likelihood of
your house and your neighbour’s house being impacted by the same flood event, then you need
a refined stochastic model. This provides several scenarios of events that could happen, which
allows for quantifying the aggregation of the risk coming from a certain pattern.”

Furthermore, Monte Carlo simulations are used to model a wide range of potential natural
disasters or other insured events. This results in a probability distribution for hazard frequency and
severity, in which inherent uncertainties are included. Nat Cat models are further highlighted by
seven participants in informing both solvency requirements and reinsurance strategies for
insurers. They focus on high-impact, low-frequency tail events that uses one in 100-, 200-, or
1000-year scenarios. These tail events are particularly relevant for solvency calculations under
Solvency Il regulations: “We use a 1-in-200-year scenario, as it is important for Solvency Il.
Solvency Il is the requirement for the solvency calculations for insurers in the EU. [...] For every
risk type, there is a formula. Then you can add it together to get the total capital requirement, the
Solvency |l capital requirement.” Another participant confirms: “We are using it for our solvency
internal model. When we want to run our model for Solvency I, we need the 99,5-percentage
quantile. You need something that's rather robust at exactly this quantile.”

Twelve participants confirm they (partly) rely on external vendors and reinsurers for Nat Cat
models, leveraging their expertise of the hazard and vulnerability component, and translating
exposure into economic risk distributions: “We make use of models developed by model vendors.
We get the information from the reinsurance brokers. They run the models to be able to negotiate
with the reinsurers and advise us on the reinsurance program, but we can also use these models
for internal risk management purposes.”

Although the external models may lack transparency due to their proprietary nature, developing
models in-house would require significant expertise, time, and financial resources. Instead,
insurers aim to gain a thorough understanding of the model’s methodology through testing and
validation in which their expertise and experience is leveraged: “We do investigations on those
external models. We are using a scorecard with all different types of tests we do on those third-
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party models. [...] We validate the methodology that they used especially relating how fast climate
shocks are translated to economic impact. Then we read the report, we check it for plausibility,
we reference it to other reports that we know of. Sometimes you need to adjust for opinions or
methodologies.”

In two instances, catastrophe models were noted as inputs for actuarial calculations. For specific
risks where external vendor models are unavailable, such as floods in certain regions, insurers
may choose to develop their own actuarial models in-house: “Mainly we work with third-party
vendor models. But that's not the case for flood risk. [...] For flood risk, we have made a model
that's built on our own account using the different advisory companies in the Netherlands. [...]
There's no external flood model available, but we've seen it as an important material risk, so we've
created a model ourselves.”

In contrast, four participants offer parametric insurance solutions. Parametric insurance
specifically targets acute natural perils, as chronic perils are challenging to insure parametrically
due to their extended duration. Unlike Nat Cat models, parametric models focus solely on the
hazard itself, triggering pay-outs based on pre-defined parameters: “In parametric insurance, you
negotiate the terms, the parameters, of the event very precisely. You set space, you set the time,
and you set a certain metric. For example, if an earthquake happens in the 100-kilometer area
around the centre of Zurich and this earthquake is more than 6 on Richter, then the insurance
policy is triggered and you get immediate pay-out based on the agreed-upon value, but if the
magnitude is 5.9, you get nothing.” Naturally, this type of insurance requires very good knowledge
of the natural perils which is leveraged through different data sources including weather stations,
drones, and satellite images, so that claims can be released quickly.

5.1.5 Insurance decision-making

Risk models generate probability distributions of potential financial losses, which then serve as
inputs for underwriters when determining policy pricing: “Based on hazard, vulnerability, and
exposure, you make a loss model that is taken for pricing. Then you have a technical price, which
tells you the minimum price that we're willing to sell this insurance for. Then people called
underwriters take it. They negotiate with the client to get the final price.”

Climate change, however, introduces significant uncertainties, potentially necessitating premium
increases in regions experiencing uncharacteristically high losses for events that might fall outside
the current models. On the other hand, as mentioned before, most non-life insurance products
have a duration of one year, which limits the application of long-term climate effects in pricing.
Climate change is very gradual, and insurers are only interested in how climate change is going
to affect the coming year: “l don't know how much climate modeling is necessary when it's one-
year policies. You want to isolate what's going to happen this year. You don't care what's going to
happen 2030.”

While long-term climate effects are not critical for pricing due to their one-year nature, the contrary
seems true for strategic considerations. Besides solvency and reinsurance, six participants
recognise the increasing influence of climate change on investment decisions, such as bonds,
equity shares in companies, or real estate: “We have an asset portfolio consisting of government
bonds, equity shares, bonds from companies, real estate, and mortgages. Those are worldwide
and we analyse it on two levels. First, on a granular level top down. We look at how our portfolio
is roughly distributed around the world and what the climate risks are to GDP and so on; [...] we
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analyse the companies we invest in. In that analysis, we use a climate analysis for the specific
asset to assess how much material risk it has.”

Since some investment portfolios hold assets for decades, a long-term strategy that incorporates
climate considerations is required, since these assets are exposed to potential climate risks over
their lifetimes. One participant elaborates on their strategy: “We have a best-in-class strategy
where companies that do well in climate risk reduction are preferred over companies that not do
as well, and the bad ones we don't want to invest in. We're hoping that by doing this, we limit our
climate risks and have more of an impact.”

Although climate risk reduction is reflected in the vulnerability component of the risk model, it is
not directly used as an input in the model. Nevertheless, four participants highlighted that they
inform clients of measures that could reduce their risk of specific natural perils: “We can show
clients: this is your flood risk today, this is how it would look in 2030, and this is how it would look
in 2050. Those assessments are passed on to the risk consulting department. They are the ones
who best advise the client what they could do, what measures they could take to reduce the risk.”

One interviewee emphasized the challenge of long-term planning for climate risk reduction
considering frequent leadership changes among boards, CEOs, and ministers.

5.2 Uncertainties and challenges

Uncovering the main uncertainties and challenges of climate risk assessments is crucial to this
study. Ten distinct categories emerged from the interviews. Figure 7 summarizes the codes for
"uncertainties and challenges," highlighting their frequency (left vertical axis, bar chart) and the
number of interviews where each challenge was discussed (right vertical axis, line chart). The
relative percentage indicates the proportion of each challenge code within the total "uncertainties
and challenges" category. It suggests a correlation between the frequency of a challenge and the
number of interviews it arose. Notably, “Nonlinear Environmental Changes” is the most evident
challenge. Participants noted that there are uncertainties that come from climate evolution that
we are not aware of because the whole system is changing. The nonlinear nature of these
changes, with potential tipping points and unforeseen triggers, significantly complicates future
climate modeling: “These effects are nonlinear and kind of increase. Small errors at the very
beginning increase in size and become huge errors in and like in 30-40-50 years projections.”

Three participants continue to address the interaction between tipping points of biodiversity and
climatic perils, highlighting its uncertainty: “The escalation that will be caused by lack of
biodiversity through climate change and global tipping points, those are the big climate events
that make a difference in what the result will be. [...] The tricky part of is that you don't have a
history of how a change in biodiversity will trigger natural catastrophes. That's a completely new
scenario. You have to model it somehow with a very high uncertainty.”

The primary challenge associated with nonlinear environmental change lies in modeling such
unforeseen scenarios. As one participant pointed out: “There's way more that we don't know than
we know. Despite all our attempts to capture this in the most sophisticated climatologist models.”

This argument is supported by “Assumptions and Parameter Validation” being the second largest
challenge. From hazard to exposure to vulnerability to loss, the uncertainty compounds if any
previous assumptions are incorrect. Wrong assumptions can therefore corrupt the entire model,
highlighting the need to validate parameters against other models, historical data, and scientific
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literature. An example of flood risk modeling illustrates its complexity: “The elevation of the riverbed
is a big assumption in the model. There's very little validation data for these tools because we don't
have enough observations of real flood events measured to any useful degree of accuracy for us
to compare the model representation of these floods to an observed reality, which makes it hard
for us to understand if anything that we're doing is any good ultimately.”

Two participants further emphasized the need for geographically specific models due to
“Geographical Risk Differences” across regions. This necessitates global data, as the impact of a
hazard can differ significantly depending on location.

“Economic Uncertainties” include capturing future inflation impacting labour and construction
costs or material shortages that could drive up prices, which leads to concerns about the future
insurability. Seven participants expressed concern about the ability to set high enough premiums
to cover potential risks: “The real issue is that at some point, even with the tools we have, we start
realizing that the price that we have is not sufficient. It is not just a matter of calculating what your
expected loss is, it is also a matter of making sure you can charge that amount to your customer.
| see the effect of climate change being a larger threat to the market dynamics than being a threat
as a shock for the industry because | think the shock component is considered in the modeling
already. But the inability to place your cover in the market and to find the customers is what is
going to cause a bit of an impact on society. It becomes a market failure more than a failure on
the modeling side.”

Translating damages into an economic effect is where there is a “Disconnect”, according to six
participants. Several issues come to light. First, a gap exists between academia's recent
recognition of climate risks in insurance and the industry's decades-long experience managing
these risks. In addition, meteorological institutes' risk assessments may not align with the specific
measures needed by the insurance industry. Finally, actuaries responsible for pricing may lack the
expertise to integrate climate scenarios, such as those provided by the IPCC, into their models.

Furthermore, “No Detailed Exposure and Vulnerability Data” seems to be a prevalent concern, as
information is often wrong or lacking. Property details, such as exact location, type of structure,
height, and materials are essential to assess a risk. Similarly, “Terrain Mapping” data on the form
of the landscape and defences such as flood protection measures are fundamental: “You need to
know not only the height of the building but also the material of the building. Depending on if your
property is on top of the hill or if you are at the bottom of a mountain, the water has a different
speed. To know this, you need a meteorologist and engineering, with that science you can build
something more intelligent.”

Beyond data gaps, the additional concern of “Closed Off Data” due to restrictions by vendor
companies or governments was highlighted, with three participants advocating for more
transparency. Uncertainty of “Regulation” regarding climate change adds another layer of
complexity. Four participants expressed concern about the lack of clear government action in
response to rising climate costs. One participant proposed a role for academia in guiding
governments towards public-private partnerships. Additionally, three participants emphasized the
uncertainty surrounding “Future Climate Adaptation” measures and the level of international
cooperation.
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Figure 7: Uncertainties and challenges overview

The focused discussion highlighted some broad perceived uncertainties that may influence the
accuracy of natural disaster risk modelling. The largest number of participants (sixteen)
highlighted uncertainties around future climate change conditions as the key challenge. This is in
line with the frequency that the specific uncertainty relating to climate change elicited from the
interviews was mentioned, i.e. the nonlinear nature of this change, and therefore unforeseen future
climate conditions. Less participants selected limited past data availability (eleven) and
uncertainties about future population and economic growth (nine) as key challenges, which is also
generally consistent with how often related uncertainties were mentioned in the interviews.
Thirteen participants highlighted uncertainties about how to include adaptation dynamics.
Therefore, this point received a higher focus in the discussion, compared to the interviews.
Participants highlighted the feedbacks that may occur between vulnerability, hazard experience
and adaptation behaviour, as well as the role that social sciences could play in assessing
adaptation behaviour over time for facilitating more accurate natural disaster risk modelling. It was
also mentioned that adaptation is often included statically across time using protected versus
unprotected hazard maps.

5.3 Innovation potential

Ten areas for innovation potential were uncovered. Figure 8 represents a similar graph as seen
before for uncertainties and challenges. Correlation between the frequency an innovation
emerged and the number of interviews they were mentioned seems, however, less prevalent.

“Parameter Improvements” within the model is where most improvements could be made. This
innovation addresses the second largest challenge “Assumptions and Parameter Validation”. One
participant pointed out that climate-related parameters are currently hard-coded in the model.
However, they should be adjustable to changing conditions to form scenarios on, for instance,
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future biodiversity or tipping points. An improved understanding of the perils through more
research is discussed as a solution, in line with the third most frequently mentioned innovation

“Improved Environmental Understanding”: “Only as research gets better and discovers new things
and improves our understanding of the perils, it will slowly get added into the models.”

An improved understanding of natural phenomena could be directly incorporated into models,
leading to better projections. New insights, for instance, the projected impact of a 3.5-degree
temperature rise on storms and floods, would enable adjustments in these projections. One
participant contested this view, arguing that the focus should be on evolving how models are built,
not just on climate research. Another participant agrees, advocating for the creation of more
models to ultimately achieve marginal improvements through model convergence: “You simply
need as many people as possible creating these models, so it's easier to do the validation. Over
time things are going to converge towards some optimal solution that everyone kind of agrees is
the best way to doit. The uncertainty will decrease as more people create these models, especially
global models. [...] Per solution, we have a better solution in the future and the sooner we reach
it, the better. For that, we need brain power, funding for model building, and more companies
building their own models.”

On the other hand, through the code “Model Sufficiency”, positive and constructive sentiments
about the current models were noted. Participants mentioned they are “getting more sophisticated
with a higher resolution” and “very advanced”. It was pointed out that nonlinear models are never
perfect while acknowledging the potential added value of combined risk and tipping point
modeling. Yet, eleven participants expressed reasonable confidence in current models for
informing climate policy and balance sheet analysis: “I think the models are great. However, | think
that all models are wrong, some models are useful. As long as we keep thinking and challenging
what we see coming out of the models and look at what possible scenarios there are, we can at
least try to define the grey swans. Black swans, those are out there. We simply don't know and
that's why they are called black swans.”

The key challenge lies in the quality of data feeding the models. Two areas were identified for
improvement: "Land and Water Flow Data," and "Higher Granularity," These categories address
the challenge “Terrain Mapping” from different angles. Floods were a particular concern,
highlighting the need for more detailed data on landscape shape and property characteristics:
“We need models that can see not only the extent and the depths of a future flood in an area but
also the flow dynamics. For example, how fast the water will be, or how long a building will drown
in the water. Therefore, strong meteorological knowledge is needed and combined with building
engineering deep learning.”

Additionally, landslides, hailstorms, and windstorms are emphasized to require specific data to
predict how local exposures are affected. Currently, most models need downscaling to obtain a
higher granularity. Yet, the more detail you can get on a granular level, so far as the model
becomes robust, the more accepted it is. Radar-based satellite data was mentioned to offer a
promising solution. By providing more precise elevation data, it can predict water flow patterns,
potential pooling areas, and flood damage to buildings and infrastructure. Additionally, LiDAR
technology, which uses laser measurements from airplanes to map ground surfaces, was
mentioned as a significant innovation. Also “Al” applications in model building and downscaling
emerged in three interviews, claiming that Al is “quite strong in modeling nonlinear effects when
it's benchmarked against experience and expertise from physicists and meteorologists.”
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An expert in flood mapping highlighted the importance of freely available, state-of-the-art elevation
data in model development, which introduces a “Data Sharing Ecosystem” as an innovation. This
ecosystem would address the challenge of "Closed-Off Data" by promoting the open sharing of
valuable data, including satellite imagery and climate change knowledge while increasing
transparency and dialogue. The concept involves breaking down data silos and establishing a
common data-sharing platform. One participant shares his view: “The idea is to create an
ecosystem because everyone is strong in their domain of expertise. This infrastructure can be
created with two things. The first one is the collaboration of different key actors in different in
industries. The second one will be the support from European governments to create a working
group so that people can work together.”

Relating to the challenge of “No Detailed Exposure and Vulnerability Data”, acquiring that data
would significantly improve loss estimations. While acquiring data on building characteristics and
protective measures is technically possible, the sheer volume of individual properties across
Europe makes comprehensive data collection impractical. To address this challenge, one
participant proposed the creation of a standardized European index cataloguing all structures.
Additionally, the potential role of Al in identifying flood defences and building structures was noted.

Lastly, three participants displayed a clear consensus on the urgent need to address climate
change and arrive at a consensus on how the industry should position itself. “Public-Private
Collaboration” could aid by mobilizing broader public support for climate change mitigation and
DRR initiatives as this is not a topic that can be solved by the industry alone. Additionally, two
participants emphasized the need for governments to establish effective regulatory frameworks
for the insurance sector. These frameworks should promote financial resilience within the industry
while ensuring that insurance remains accessible and affordable for policyholders: “You need to
have a public-private cooperation. It needs to be a market solution that needs regulation from the
government. Then there is a much broader set of people that are needed to find a solution that
works. Academia can play a role here.”

Innovation Potential
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Figure 8: Innovation potential overview
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The focused discussion further highlighted some general methodological innovations that are
needed to advance natural disaster risk modelling. Specifically, the largest frequency of
participants selected new or better methods of including multi-hazard risk (seventeen) and
adaptation dynamics (sixteen). This is generally in line with the interview results that places a high
focus on parameter improvements, which may be achieved via improved understanding of perils,
adaptation dynamics and the interrelationships between perils in a multi-hazard risk environment.
The discussion emphasized the importance of multi-hazard risk and compounding events in the
context of adaptation. That is, modeling innovations need to account for the fact that individuals
often need to adapt to multiple perils in one location. The occurrence of single hazards can trigger
other hazards and cascading effects, resulting in more severe consequences than the sum of the
impacts of individual hazard occurrences. Furthermore, less participants selected addressing
model uncertainty (eight) and more refined risk maps (eleven times). The aforementioned
interview findings highlight specific points related to the latter issue on a specific data need, e.g.
on the types of data, granularity and data sharing.

6 Discussion of literature review

6.1 State of the art and directions for future research

Climate risk insurance models can be subdivided into two components: the risk module and the
insurance module. The shape of these components generally depends on the model type, the
climatic hazard, and the application of the model. In terms of model type, we distinguish three
primary categories: insurance supply models, partial equilibrium models, and agent-based
models.

Insurance supply models are useful for premium calculations, which may include premium
development over time under different socioeconomic development and climate change scenarios
(e.g., Aerts and Botzen, 2011; Boudreault et al., 2020). However, most supply models are not
forward-looking (e.g., Boudreault & Ojeda, 2022; Brunette et al., 2015; El-Adaway, 2012;
Sacchelli et al., 2018). Partial equilibrium models allow for analyzing the interplay between
insurance supply and demand. This makes partial equilibrium models useful for insurance market
type assessments (e.g., Hudson et al., 2019) or for investigating inquiries pertaining to the
affordability and uptake of insurance (e.g., Tesselaar et al., 2022; Tesselaar et al., 2020b). Agent-
based models allow for the simulation of complex agent behavior. This is useful for analyzing
decisions that reduce climate risk (e.g., de Ruig et al., 2022; Dubbelboer et al., 2017; Jenkins et
al., 2017).

The risk component of a model estimates the risk used to calculate an insurance premium. This
component can -with one exception in the reviewed papers, (Brunette et al., 2017)- be divided
into catastrophe models and actuarial models. Most of the reviewed papers estimate risk using a
catastrophe model. A catastrophe model simulates the risk based on hypothetical events and is,
hence, useful for estimating the risk of low-probability high-impact events such as flooding. On the
other hand, actuarial models use loss data about actual events to estimate the risk. Therefore, the
actuarial approach tends to be more applicable to hazards that happen more commonly such as
windstorms.
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The insurance component of the model translates the risk into an insurance application. While
most papers focus on household insurance, it is worth noting that forestry insurance modeling is
also a well-established and developed field (e.g., Barreal et al., 2014; Brunette et al., 2017; Loisel
et al., 2020; Sacchelli et al., 2018). Multiple papers include a modeled insurer, often in agent-
based models (e.g., de Ruig et al., 2023; Dubbelboer et al., 2017; Jenkins et al., 2017), partial
equilibrium models (e.g., Hudson et al., 2019; Tesselaar et al., 2020b), or game-theoretic models
(e.g., Kesete et al., 2014; Peng et al., 2014). The premium calculation predominantly follows a
risk-based approach, wherein the premium is designed to mirror the level of risk inherent to the
insured entity. The usage of risk-based premiums is common for climate risk insurance.

More than half of the papers about climate risk insurance models capture flood hazards. This
means that the other climatic hazards are relatively underrepresented in the literature. Insurance
for climatic hazards such as drought and windstorm damage tends to be relatively understudied
in comparison to flooding. This is despite windstorms accounting for a substantial 40% of the total
losses attributed to climate-related events, while flooding constitutes 25% (Hoeppe, 2016). The
disproportionate attention to flood-related research compared to the distribution of overall losses
highlights an imbalance in the focus on various climatic perils.

Another key research gap is the application of climate risk insurance models to underdeveloped
countries. Of the models considered, only a small subset is applied to Asia, and none of the models
are applied to locations in Africa or South America. A potential reason for this is the lack of
available data. However, since these areas are relatively more vulnerable to climatic hazards than
most developed areas (IPCC, 2023), insurance and, therefore, insurance modeling are relevant
there. Utilizing remote-sensing techniques to assess the risk for insurance purposes (Islam et al.,
2022) can potentially prove useful in locations where data collection is difficult.

A small subset of models concerns insurance for the commercial sector, of this small subset all
papers considered only agribusinesses, except for Ermolieva et al. (2017). However, the
commercial sector also experiences substantial damage from climatic hazards due to direct
impact and business interruptions as a consequence of these direct impacts. Business
interruptions can have significant and widespread consequences, potentially resulting in
outcomes such as unemployment and product shortages (Koks et al., 2019; Sultana et al., 2018;
Taguchi et al., 2022). Therefore, amidst a shifting climate, it is imperative to assess the feasibility
and resilience of climate risk insurance for businesses. Achieving this goal will necessitate
increased modeling efforts within this domain.

A significant research gap exists in the observation that merely half of the climate risk insurance
models can be categorized as forward-looking. This implies that only half of these models integrate
future scenarios to evaluate insurance mechanisms in the context of a changing climate and
evolving socioeconomic development scenarios. Evaluating risk based on the experience from
past events is no longer sufficient to capture the uncertainties around future risks (Adger et al.,
2018). Future premium setting is impeded by the uncertainty around climate change (Botzen,
2021). This calls for a thorough forward-looking approach to climate risk insurance setting, which
is currently not happening enough, indicating a research gap. This gap is evident for both the
inclusion of climate change scenarios, such as RCP scenarios, and the inclusion of socioeconomic
development scenarios, such as SSP scenarios. Furthermore, not all papers that are categorized
as forward-looking include multiple scenarios. Utilizing multiple scenarios enables a more
comprehensive capture of the uncertainties associated with the future.
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Furthermore, wildfire and windstorm insurance models do not include DRR (but see Barreal et al.
(2014)). Even though DRR for these perils does exist (Manocha & Babovic, 2017; Paveglio et al.,
2018), the incorporation of DRR into insurance models for these climatic hazards remains limited.
Consequently, there is a potential avenue for enhancing the robustness of insurance models by
integrating DRR elements specific to wildfire and windstorm risks.

Another gap is the limited attention to multi-hazard modeling. Multi-hazard risk modeling is an
emerging field that poses a more thorough approach to risk management than traditional methods
(Stalhandske et al., 2023; Tilloy et al., 2019). Multi-hazard modeling is especially relevant in the
context of compound hazards, which largely exacerbate the potential damages. Currently, there
is a small number of papers that specifically consider multi-risk premiums, and they either consider
forestry insurance policies (Brunette et al., 2015; Sacchelli et al., 2018) or household insurance
against earthquakes and flooding (Perazzini et al., 2022).

6.2 Policy recommendations

Most forward-looking models indicate that climate change and socioeconomic developments
highly exacerbate future risk and, hence, lead to increased insurance premiums (Boudreault et
al., 2020; Crick et al., 2018; Dubbelboer et al., 2017; Hudson et al., 2016; Jenkins et al., 2017;
Kunreuther et al., 2013; Tesselaar et al., 2020a, 2020b, 2022; Unterberger et al., 2019). This
suggests that taking climate change and socioeconomic developments into account in insurance
models is imperative in assessing the long-term viability of insurance. However, uncertainty about
future risks gives some insurers an incentive to charge higher surcharges on insurance premiums
and restrict coverage for extreme weather events (Botzen, 2021). Applying a stochastic approach
rather than a deterministic approach in climate risk assessment (Walker et al., 2016) and taking
the ambiguity between different climate models into account (Birghila et al., 2022) are methods to
deal with this uncertainty.

Multiple papers advocate for the implementation of risk-based premiums in natural disaster
insurance schemes because they are useful for incentivizing DRR efforts (Brunette et al., 2017;
de Ruig et al., 2022, 2023; Dubbelboer et al., 2017; Hudson et al., 2016, 2019; Jenkins et al.,
2017; Unterberger et al., 2019). For instance, risk-based premiums may act as a price signal that
raises awareness among policyholders of the climate risks they face. Moreover, rewarding
policyholders who make their properties resistant to the impacts of extreme weather with premium
discounts gives them a financial incentive for taking DRR measures against climate risks.
Incentivizing DRR is also a recommendation given in a joint discussion paper by the European
Central Bank (ECB) and the European Insurance and Occupational Pensions Agency (EIOPA;
ECB & EIOPA, 2023). However, it is also important to consider the affordability of insurance, as
fully risk-based premiums might lead to unaffordability and, hence, a reduced uptake among low-
income households in areas with a high natural disaster risk (Tesselaar et al. 2020b; Unterberger
et al., 2019). A potential policy solution for this unaffordability might be the usage of a voucher
scheme, which alleviates the share of the insurance premium that is considered unaffordable.
Another option is to consider public-private partnerships or making use of a semi-voluntary
structure which makes insurance mandatory to acquire a mortgage for example.

Furthermore, to address increasing climate risk and keep insurance schemes viable, a proactive
involvement of the government in the insurance market has been proposed through the
establishment of public—private partnerships (Hudson et al.,, 2019; Tesselaar et al., 20203,
2020b). In such an approach, the government strives to reach a balance between ensuring the
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financial viability of insurance companies and keeping premiums affordable for the general public.
Another example of this can be found in the model used by Crick et al. (2018), Jenkins et al.
(2017), and Dubbelboer et al. (2017), which actively examined improvements in the U.K. public—
private partnership FloodRe. The government can also be involved by means of enforcing
insurance uptake, thereby increasing the pool of policyholders. Pinheiro & Ribeiro (2013) and
Tesselaar et al. (2020a) suggested that the mandatory uptake of insurance can lead to higher
resilience, the former for forestry businesses concerning wildfire hazard and the latter for
households concerning flood hazard. Mandatory uptake leads to the possibility of spreading the
risk across more policyholders, leading to lower premiums and a lower protection gap.

Lastly, multiple studies suggest that developing insurance products that cover multiple climate
risks can be attractive for enhancing insurance coverage for climate risks (Brunette et al., 2015;
Hudson et al., 2019; Perazzini et al., 2022; Sacchelli et al., 2018). This would require a move from
single- to multi-hazard climate risk assessments in insurance modeling. Combining multiple
hazards under a single insurance policy has been observed to necessitate a lower amount of
capital compared to insuring each hazard individually due to risk diversification (Perazzini et al.,
2022).

All these recommendations require close collaboration among stakeholders at different levels
(e.g., ECB & EIOPA, 2023). Birghila et al. (2022), Crick et al. (2018), Hudson et al. (2016), and
Sidi et al. (2017) emphasized the importance of involving diverse stakeholders (e.g., government,
other private partners) to create a more nuanced, effective, and transparent risk management
framework. Collaboration between all stakeholders involved can limit uncertainty. Specifically,
collaboration between the insurance and public sectors is often crucial (Kunreuther, 2018). An
example is a clear communication of the government about post-disaster compensation to limit
the crowding out of demand for private insurance, also called charity hazard (Tesselaar et al.,
2022). Furthermore, due to the inherent complexity of insurance products, collaboration between
insurers and government stakeholders not only widens the spectrum of perspectives but also
enhances the adaptability of insurance strategies to different challenges. Examples are combining
private insurance coverage with public measures that limit climate risk and introducing public—
private insurance coverage when premiums otherwise rise to unaffordable levels.

[ Discussion of stakeholder analysis

This study makes two important contributions. First, it identifies challenges and opportunities to
improve climate risk assessment through innovation. Second, its findings inform policy implications
for the insurance industry, academia, and governments.

7.1 Bridging the gap to innovation

By analysing and connecting the main challenges and innovation potentials identified through
stakeholder analysis, we can pinpoint the most promising areas for advancing climate risk
assessment practices. First, the uncertainty that follows from nonlinear environmental changes,
such as triggers and tipping points, requires improved environmental understanding for them to
be accounted for in the models. In accordance with the responses of participants, Jarzabkowski
et al. (2019) confirm insurance policies are a reactive product designed around short-term
protection with an annual life cycle that is not directly linked to longer-term climate change. The
IMF supports the statement that climate change’s physical risks extend beyond typical risk
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analysis horizons and that there is sizeable uncertainty in climate risk modeling due to the many
pathways for future emissions and temperatures (Adrian et al., 2022). The stakeholder analysis
revealed that improved environmental understanding is necessary for more accurate hazard
projections. To address this, Zscheischler et al., (2018) advocate for a refocused approach, in
which research should consider a climate-related hazard as a combination of multiple factors,
rather than a single event. This approach could offer a deeper understanding of the underlying
physical processes, ultimately guiding the development of more accurate climate models and,
hence, better risk assessments.

Second, assumptions and parameter validation and their improvement reveal a top area where
advancements can be achieved. As one participant explained, this requires changing from hard-
coded climatic factors in models to adjustable ones. Participants further suggested creating a
larger pool of alternative models for robust comparison and validation. Molinari et al. (2019)
support these insights by identifying effective validation techniques such as comparing model
results with observed data, benchmarking with other models in the same area, and leveraging
expert knowledge. The need for higher-quality data to perform validation and benchmarking was
a recurring topic. This could be addressed using varied data sources including historical weather
data, satellite imagery, and climate projections. In addition, participants highlighted the potential
of Al in model building through downscaling complex geographical data, using deep learning
methods that can handle high-dimensional data, and recognising patterns between relationships,
which aligns with findings from Lin et al. (2023).

Third, a big concern seemed to be a lack of exposure and vulnerability data of the insured
portfolios. While the need of improving such data emerged in nine out of sixteen interviews, the
question remains how to accomplish this. Participants emphasized that, in many cases, detailed
records of building characteristics are missing. Therefore, updated tools are needed to monitor
financial solvency, as the number of exposures in hazard-prone areas is growing (Nicholson,
2019). The interviews identified Al as a solution for vulnerability assessments by identifying building
structures and flood defences. Combined with blockchain and the Internet of Things (loT), Al
unlocks further possibilities for insurers, as it could deliver secure, real-time data collection and
remote monitoring, leading to more accurate risk assessments (Tinianow, 2019). While blockchain
was not explicitly mentioned during the discussions, LIDAR technology was addressed as a
promising solution for ground surface mapping by one of the participants. Pinelli et al. (2020)
support this, highlighting machine learning combined with LiDAR or drones to produce reliable
and complete exposure datasets. Additionally, Stone (2017) suggests a combined approach of
omnidirectional imagery collection (e.g. Google Street View) with virtual surveying methodology
to collect building data. Yet, this method was not discussed in the stakeholder analysis.

Fourth, as became evident in the results, physical risk exposure is highly location-specific, which
is why there is a need for high-resolution climate models (Adrian et al., 2022; Zscheischler et al.,
2018). The stakeholder analysis indicated the need for improved terrain mapping, stressing
expertise in water flow dynamics and knowledge of the geological makeup of the insured
property’s surrounding land. Gathering of high-quality field data therefore requires improvement,
which could be achieved through institutional collaboration, according to Pinelli et al. (2020). In
addition, similar to improving exposure data, Al combined with LiDAR technology could refine the
understanding of geographical risk.

Fifth, a common data-sharing ecosystem across Europe could address challenges caused by
siloed or closed-off data, particularly from government sources currently unwilling to share. A
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report from The Geneva Association (2018) affirms that insurers cope with limited access to risk
information, which hinders accurate pricing. As a response, three participants called for an
ecosystem that could serve as a central hub for comprehensive meteorological data, currently
collected on a country-by-country basis, to foster a more unified climate risk assessment
framework across the continent. Open-source initiatives and risk data, along with standardized
hazard maps, would reduce the cost of risk analysis and underwriting (Warner et al., 2013),
ultimately leading to improved risk assessment and the development of innovative new insurance
products.

Sixth, public-private collaboration presents an avenue for reducing economic and regulatory
uncertainty. While not explicitly identified as a clear-cut solution during the interviews, five
participants emphasized the benefits of cross-sector collaboration. These include incentivizing
DRR strategies (Pattberg, 2010), fostering innovation and resilience through knowledge sharing,
and facilitating resource mobilization (Drejer & Jgrgensen, 2005). In addition, clarity on future
regulations ensures better alignment across sectoral incentives, allowing the industry to
proactively integrate this consideration into their risk management strategies (The Geneva
Association, 2018).

7.2 Policy implications

To effectively address climate risk, innovations should be made beyond the short-term focus of
non-life insurance as large climate shocks pose an increasing challenge to the industry, as well as
society. Therefore, improved environmental understanding is crucial for supporting the
development of more sophisticated climate risk assessment methods and ongoing research is
required to enhance the comprehension of climate-related impacts. To accelerate progress, the
insurance industry should foster stronger, more coordinated engagement with the scientific
community (Golnaraghi et al., 2016). Internationally coordinated research programs and
operational initiatives can bridge the gap between climate research and risk pricing, through which
a mutual understanding of needs can be fostered and a disconnect between institutions can be
decreased. Furthermore, progress in scientific research and scenario analysis, combined with
technical innovations, such as big data, digital mapping, and advanced computing offers novel
opportunities for developing advanced climate-risk modules. Evaluating the success of industry-
science initiatives could be measured by factors like knowledge transfer, increased research
output, technological innovation, and ultimately, the improvement of Nat Cat models themselves.

From a governmental perspective, a strong regulatory framework could foster innovation in
climate risk assessments by creating supportive regulations for data-sharing ecosystems and
supporting the development of climate-risk models, which are needed to improve parameter
validation. Systematic collection and availability of publicly funded environmental and socio-
economic data should be promoted and alternative remotely sensed datasets should be
implemented in insurance solutions (Warner et al., 2013). Regulations facilitating public-private
partnerships can further leverage combined expertise to accelerate progress and address
economic uncertainties. As such, governments, policymakers, and regulators across sectors
should work in a more coordinated fashion to build socio-economic resilience to climate change.

7.3 Limitations and future research

The qualitative research methodology used for conducting semi-structured interviews is limited by
some inherent challenges. The reliance on participant responses raises potential concerns as the
qualitative nature of the data makes it challenging to objectively verify participants’ responses.
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Besides, the research design allows for a degree of participant control over the content (Queirés
et al., 2017). Moreover, recruiting a more diverse group of experts, particularly those from Nat
Cat model vendor companies, could have yielded a wider range of perspectives. This possible
lack of representativeness could lead to sampling bias, where individual views disproportionately
influence the findings, reducing their generalisability and credibility (Gobo, 2004). Additionally, a
larger sample may achieve further data saturation, elaborating on important themes and nuances
(Hennink et al., 2017).

It should be acknowledged that this research takes an explorative approach to identifying
innovation areas in climate risk assessments. Building upon these insights, future research could
look deeper into the practical application of proposed innovations by evaluating the feasibility and
challenges associated with implementing the innovations in collaboration with industry leaders.
Furthermore, improved modeling of climate risks has the potential to increase premiums and the
number of assets defined as high-risk is growing, partly due to the increasing frequency and
severity of climate-related events (Jarzabkowski et al., 2019). Future research should look into the
long-term insurability of natural hazards to prevent a market failure where people cannot afford
the increasing costs of insurance, or where insurers can’t price policies high enough to cover the
risk.

8 Conclusion

This article has synthesized the literature on climate risk insurance models and their
characteristics in a literature review. Climate risk insurance models range from simple pricing
applications to more complex partial equilibrium and agent-based models that can be used to
assess research questions about insurance uptake and affordability. All models can be subdivided
into two components: the risk module and the insurance module. The risk module can either be a
catastrophe model that simulates the risk approached from hazard, exposure, and vulnerability
aspects, or it can be based on historical data via an actuarial approach. Catastrophe models are
typically more effective in assessing the risk of climatic hazards characterized by a low probability
of occurrence but high impact, such as floods. On the other hand, actuarial approaches prove
more beneficial in evaluating risks associated with climatic hazards that occur more frequently,
such as windstorms or wildfires.

Most forward-looking models indicate that climate change and socioeconomic developments
exacerbate future risk and, hence, lead to increased insurance premiums. Various studies
recommend introducing risk-based premiums to incentivize DRR efforts that limit this increase in
climate risks, combined with policy strategies that address affordability issues among low-income
households. Other findings point toward introducing public—private insurance to cope with climate
change and enhance risk spreading by introducing insurance purchase requirements or insurance
products that cover multiple climate risks.

Moreover, the research identifies key challenges in current climate risk assessment approaches
and explores innovative solutions through stakeholder analysis with insurance industry experts.
Firstly, the reliance on historical data limits the accuracy of climate risk models in predicting natural
hazards. This research highlights the need for integrating long-term and adaptive views of climate
risk, incorporating non-linear environmental changes. Improved risk data and analysis of the
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impact of climate change are essential to increase understanding of event frequency, severity,
and potential financial losses.

Secondly, climate risk models depend heavily on assumptions and parameter validation, which
relies on benchmarking against other models and underlying data, including exposure and
vulnerability information, which is often lacking. This gap necessitates updated tools and
institutional collaboration to improve data gathering.

Thirdly, emerging technologies and open-source initiatives have the potential to enhance climate
risk models significantly. Leveraging Al, digital mapping, and advanced computing can improve
the granularity of terrain data and, in turn, the accuracy and reliability of risk assessments. Public-
private initiatives could facilitate these advancements and further reduce exogenous uncertainty.
Based on the stakeholder analysis, we suggest that future research should focus on the practical
application of proposed innovations and exploring long-term insurability of natural hazards to
prevent market failure.

Furthermore, other knowledge gaps were identified and a research agenda was suggested based
on the literature review to improve modeling techniques to aid decision-making in insurance policy
design. First, flood insurance tends to be highly overrepresented in the climate risk insurance
modeling literature. Second, most models are applied to case studies in developed countries,
despite the potential for developing countries to experience a more substantial increase in natural
disaster damages, making them potentially more significant beneficiaries of insurance coverage.
Third, the coverage for non-agricultural commercial sector insurance is limited, even though a
sizable portion of the climate-related damages can be found in this sector, also through business
interruption.

Merely half of the reviewed papers applied forward-looking climate risk analyses by utilizing climate
change scenarios to examine the impact of climate change on risk. With climate change increasing
the frequency and severity of natural hazards, this indicates a considerable research gap.
Furthermore, an even smaller number of studies incorporated socioeconomic development
scenarios to consider their effects on future risk. This suggests that only a subset of the reviewed
papers is truly valuable for evaluating the ability of insurance to cope with future climate change.

The field of climate risk insurance modeling is growing, and the current state-of-the art models are
certainly capable of addressing pivotal inquiries related to climate risk insurance. Addressing the
research gaps identified by our review is imperative for delivering insights into how the insurance
sector can proactively adapt to the challenges posed by climate change. By refining models,
expanding geographical and hazard coverage, improving the inclusion of the commercial sector,
and embracing a forward-looking perspective, the insurance industry will be better equipped to
fulfil its role in mitigating the financial impacts of climate-related losses and fostering resilience.
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10 Appendix

Supplementary table 1: keywords used in query

Keyword group Subgroup Keywords
Hazard Perils flood, river, coastal, inundation, pluvial, storm, hail, hurricane,
cyclone, tornado, sea level rise, tsunami, landslide
Synonym disaster, catastrophe, climate hazard
Model type Type catastrophe model, damage model, actuarial model, insurance

supply model, econometric model, agent based model, ABM,
machine learning model, machine learning, deep learning
Data geospatial model, GIS

Insurance - insurance, compensation system, compensation arrangement,
reinsurance, microinsurance, actuarial

The final search string has the following form:

TITLE-ABS-KEY ( flood* OR river* OR coast* OR inundation OR pluvial OR storm* OR hail OR hurricane OR cyclone OR tornado OR "sea level rise"
OR landslide OR wildfire OR drought OR climat* ) AND TITLE-ABS-KEY ( model* OR abm OR "machine learning" OR "deep learning" OR gis OR "geo
information science" OR ai OR "artificial intelligence” ) AND TITLE-ABS-KEY ( insur* OR "compensation arrangement" OR "compensation system" OR
reinsur* OR microinsurance OR actuar* ) AND ( LIMIT-TO ( LANGUAGE , "English" ) ) AND ( LIMIT-TO ( DOCTYPE , "ar"))
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Supplementary table 2: risk and insurance model types

the European Union

Paper Risk model type Insurance model type
Aerts and Botzen (2011) | Catastrophe Pricing (supply model)
Barreal et al. (2014) Econometric Partial equilibrium
Birghila et al. (2022) Catastrophe Demand model
Boudreault and Ojeda Catastrophe Pricing (supply model)
(2022)
Boudreault et al. (2020) | Catastrophe Pricing (supply model)
Brunette et al. (2015) Econometric Pricing (supply model)
Brunette et al. (2017) Theoretical Partial equilibrium
Crick et al. (2018) Catastrophe Agent based
Ding et al. (2017) Catastrophe Principal agent
Dubbelboer et al. (2017) | Catastrophe Agent based
El-Adaway (2012) Econometric Pricing (supply model)
Ermolieva et al. (2017) Catastrophe Partial equilibrium
Guo et al. (2022) Econometric Game theory
catastrophe
Hudson et al. (2016) Catastrophe Partial equilibrium
Hudson et al. (2019) Catastrophe Partial equilibrium
Islam et al. (2021) Econometric Demand model
Jenkins et al. (2017) Catastrophe Agent based
Kalfin et al. (2022) Econometric Pricing (supply model)
Kesete et al. (2014) Econometric Game theory
catastrophe
Kunreuther et al. (2012) | Catastrophe Pricing (supply model)
Loisel et al. (2020) Catastrophe Partial  equilibrium  /
game theory
Moosakhaani et al. Catastrophe Game theory
(2022)
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Peng et al. (2014) Econometric Game theory
catastrophe

Perazzini et al. (2022) Catastrophe Partial equilibrium

Pinheiro and Ribeiro Econometric Pricing (supply model)

(2013)

De Ruig et al. (2022) Catastrophe Agent based

De Ruig et al. (2023) Catastrophe Agent based

Sacchelli et al. (2018) Catastrophe Pricing (supply model)

Sidi et al. (2017) Econometric Pricing (supply model)

Tanaka et al. (2022) Catastrophe Agent based

Tesselaar et al. (2020a) | Catastrophe Partial equilibrium

Tesselaar et al. (2020b) | Catastrophe Partial equilibrium

Tesselaar et al. (2022) Catastrophe Partial equilibrium

Thompson et al. (2015) Econometric Pricing (supply model)

Unterberger et al. Catastrophe Partial equilibrium

(2019)

Walker et al. (2016) Catastrophe Pricing (supply model)
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Supplementary table 3: risk characteristics of the models

D1.2 Advancements in actuarial risk modeling

Paper Hazard type Multi-hazard / single-hazard | Country/region Climate change | Socioeconomic Risk reduction inclusion
scenario(s) inclusion development (by
scenario(s) inclusion household/government/business)
Aerts and Botzen (2011) Flooding (coastal and | Single-hazard The Netherlands Yes, four climate change | Yes, future land-use | Yes (g)

riverine)

scenarios

maps based on two

economic growth
scenarios
Barreal et al. (2014) Wildfire Single-hazard Spain No No Yes (b)
Birghila et al. (2022) Drought Single-hazard Austria Yes, RCP4.5 No Yes (b)
Boudreault and Ojeda | Flooding (riverine) Single-hazard Canada No No No
(2022)
Boudreault et al. (2020) Flooding (riverine) Single-hazard Canada Yes, RCP4.5 and | No No
RCP8.5
Brunette et al. (2015) Wildfire, wind throw, | Multi-hazard Slovakia No No No
insect outbreaks
Brunette et al. (2017) Damage to forest in | Single-hazard and multi- | - No No Yes (b)
general hazard
Crick et al. (2018) Flooding (surface | Single-hazard UK, London Yes, a baseline and high- | No Yes (g [and developers])
water) emission scenario
Ding et al. (2017) Debris flows Single-hazard Shengou Basin, China No No No
Dubbelboer et al. (2017) Flooding (surface | Single-hazard UK, London Yes, high-emission | No Yes (h + g)
water) scenario
El-Adaway (2012) Windstorms Single-hazard United States, Mississippi No No No
Ermolieva et al. (2017) Flooding (riverine and | Single-hazard The Netherlands, Rotterdam | No No No
coastal)
Guo et al. (2022) Hurricanes (flood and | Single-hazard United States, North Carolina | No No Yes (h + g) (government does
wind) buyouts and offers subsidies)
Hudson et al. (2016) Flooding (riverine) Single-hazard France and Germany Yes, SRES A1B | Yes,  socioeconomic | Yes (h)
greenhouse gas | projections at the
emission scenario national level from
CIESIN
Hudson et al. (2019) Flooding (riverine) Single-hazard European Union Yes, SRES A1 scenario Yes, ensemble mean of | Yes (h + Q)
SSP scenarios
Islam et al. (2021) Flooding (flash floods) | Single-hazard Bangladesh No No No
Jenkins et al. (2017) Flooding (surface | Single-hazard UK, London: Camden Yes, high-emission | No Yes (h + g)
water) scenario
Kalfin et al. (2022) Natural disasters in | Single-hazard and multi- | Indonesia No No No
general hazard
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Kesete et al. (2014) Hurricanes Single-hazard United States, North Carolina | No No No
Kunreuther et al. (2012) Hurricanes Single-hazard United States, Florida Yes, six future hurricane | No Yes (h)
scenarios
Loisel et al. (2020) Storm Single-hazard Southwest France No No No
Moosakhaani et al. (2022) | Flooding (riverine) Single-hazard Iran No No No
Peng et al. (2014) Hurricanes Single-hazard (but it covers | USA, North Carolina No No Yes (h + g)
both  wind and flood
damage)
Perazzini et al. (2022) Earthquakes, flooding | Single- and multi-hazard Italy No No No
(general)
Pinheiro and  Ribeiro | Wildfire Single-hazard Portugal No No No
(2013)
De Ruig et al. (2022) Flooding (coastal and | Single-hazard (flooding | United States Yes, RCP4.5 and | Yes, SSP2 and SSP5 Yes (h + g)
riverine) seen as one type) RCP8.5
De Ruig et al. (2023) Flooding (coastal) Single-hazard USA, New York City: | Yes, sea level rise Yes, SSP2 and SSP5 Yes (h)
Jamaica Bay
Sacchelli et al. (2018) Wildfire and storm Multi-hazard Italy No No No
Sidi et al. (2017) Flooding (riverine) Single-hazard Indonesia No No No
Tanaka et al. (2022) Flooding Single-hazard Japan Yes, 2- and 4-degree | Yes, income and house | No
(riverine/pluvial) temperature rise prices increase over
time; economy grows at
a constant rate over
time
Tesselaar et al. (2020a) Flooding (riverine) Single-hazard European Union + UK Yes, RCP4.5 and | Yes, SSP2 and SSP5 | Yes (h)
RCP8.5 and the average | and Winsemius et al.’s
of five GCM scenarios (2016) future
simulations of built-up
area
Tesselaar et al. (2020b) Flooding (riverine) Single-hazard European Union + UK Yes, RCP2.6, RCP4.5, | Yes, SSP1, SSP2, | Yes(h)
RCP6.0, RCP8.5, and | SSP3, SSP5, and
the average of five GCM | Winsemius et al’s
scenarios (2016) future
simulations of built-up
area
Tesselaar et al. (2022) Flooding (riverine) Single-hazard European Union + UK Yes, RCP4.5 (more RCP | Yes, SSP2 (more SSP | Yes (h)
scenarios in the | scenarios in Appendix),
Appendix), and the | and Winsemius et al.’s
average of CMIP5 GCM | (2016) future
scenarios simulations of built-up
area
Thompson et al. (2015) Wildfires Single-hazard Western USA No No No
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Unterberger et al. (2019) Flooding (riverine) Single-hazard Austria Yes, RCP8.5and 5 GCM | Yes, SSP5 Yes (g)
scenarios
Walker et al. (2016) Cyclones Single-hazard Australia Yes, maximum wind | Yes, vulnerability curve | Yes (h)

speeds increase by 5%
each year over a 90-year
period

is shifted such that
higher wind speeds
cause the same level of
damage
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Paper Consumer Insurance markets Competition Commercial | Premium setting Decision to insure
type between insurers | sector
modeled insurance
Aerts and Botzen Households Private and public—private | No No Risk-based with a premium loading factor to | Households are obliged to take flood insurance.
(2011) account for insurance company costs and
profit; insurers pay up to a cap, and the
government pays the rest.
Barreal et al. (2014) Forestry - No Yes The optimal premium is calculated between | Based on the net present value of forest investments
sector the difference in expected damage with and
without insurance.
Birghila et al. (2022) Farmers One representative | No Yes The premium is based on the distortion | Only the middle losses are potentially insured; small
insurer premium principle, where the loss suffered is | losses are for the insurance taker, and large losses
multiplied by a distortion risk measure, which | require outside assistance. How large the proportion of
leads to higher values for low-probability high- | middle losses is is determined via an optimization
consequence events. The premium also | problem. The optimization problem is based on the loss
contains a loading factor. The policyholder has | distribution for the case of only a single loss distribution
a budget of which a proportion is available for | (non-ambiguous case) or the case of multiple loss
the premium (representing a deductible). The | distributions (ambiguous case). The policyholder is
government also finances a proportion of the | expected to be risk neutral for small losses and risk
premium. averse for large losses. The policyholder has a budget
of which a proportion is available for the premium
(representing a deductible).
Boudreault and Ojeda Households Two competing insurance | Yes No The insurance company clusters the | Homeowners choose the insurance contract with the
(2022) companies households based on similar flood risk and | lowest premium.
bases the premium on the average annual loss
per cluster.
Boudreault et al. Households One representative | No No A base premium times the relative riskiness | NA
(2020) insurer and the exposure or a risk-sharing parameter
(to spread the risk across all policyholders in
the portfolio) instead of the relative riskiness; if
this is too low, the flood loss does include a
deductible and a limit. The relative riskiness is
calculated per region.
Brunette et al. (2015) Forestry One representative | No Yes Risk-based + extra premium to insure the | NA
sector insurer forest stand in relation to the total insured area
of hectares to reduce the risk of the insurer.
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Brunette et al. (2017) Forestry One representative | No Yes The insurer is risk neutral, and the price of | Based on a strictly increasing and concave utility
sector insurer insurance is given as the unit price of | function (risk aversion)
insurance times the compensation amount.
The insurance contract includes a deductible
that can be chosen by the insured.
Crick et al. (2018) Households Public market with public | No No Risk-based taking risk-reduction methods into | Households are obliged to take flood insurance.
reinsurance scheme account, a deductible, and a base premium.
FloodRe The impact of the reinsurance scheme
FloodRe on the premium is also calculated.
Ding et al. (2017) Households One representative | No No The premium is chosen by the insurance | The decision to purchase insurance is based on an
insurer company alongside the rate of compensation | expected utility curve that takes into account the risk
based on an income-maximizing problem that | degree of debris flow, the total assets of the insurant,
considers the risk degree of debris flow, the | the loss caused by debris flows, the premium, and the
total insured assets, the premium, the rate of | rate of compensation.
compensation, and the loss caused by debris
flow.
Dubbelboer et al. Households Public market with public | No (mentions | No Risk-based taking risk-reduction methods into | Households are obliged to take flood insurance.
(2017) reinsurance scheme | what could account, a deductible, and a base premium.
FloodRe happen if The impact of the reinsurance scheme
competition was FloodRe on the premium is also calculated.
modeled)
El-Adaway (2012) Civil One representative | No No Based on running a Monte Carlo simulationon | NA
infrastructure insurer bootstrapped historical loss data.
developments
Ermolieva et al. (2017) | Households Insurers,  governments, | No Yes Using quantile-based stochastic optimization | The decision variables, including insurance coverage,
and firms reinsurers, and funds are under a range of safety constraints across | is determined via the optimization of the system.
grouped via a risk stakeholders to produce optimal risk-based
reserve. In the case location-specific insurance premiums and
study, only one insurer or coverage.
catastrophe fund
operates per region.
Guo et al. (2022) Households A market of multiple | Yes No The premium price is defined as charge per | Based on a mixed logit model using the insurance
insurers, incorporated via expected dollar loss and varies by region. | premium, the deductible, an indicator of whether the
a perfect information Hypothetical insurance price levels are first | home is located inside or outside the floodplain, the

Cournot—-Nash
noncooperative game

simulated to maximize the insurers’ net profits,
and these insurance prices are then
implemented in the Cournot-Nash equilibrium
model to generate the equilibrium risk-based
insurance prices.

house-to-coastline distance, the number of hurricanes
experienced by the homeowner, the homeowner’s
income, age, and years since the last hurricane
experienced as covariates. There is also an
affordability constraint such that the premium cannot
exceed the homeowner’s budget expressed as a
percentage of the home value.
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Hudson et al. (2019) Households Six market structures, | Yes (in Appendix) | No Risk-based and depending on the number of | Subjective expected utility that accounts for
ranging from public to households in a region, the premium includes | affordability
private a loading factor and a deductible; there is an
incentive in the premium for DRR methods:
The premium gets lower via the effectiveness
ratio of the DRR method.
Hudson et al. (2016) Households A public-private flood | No No Various insurance premium rules, including | Subjective expected utility that accounts for
insurance scheme risk-based, risk-based with a risk reduction | affordability
premium  discount, capped risk-based
premium, and solidarity premium.
Islam et al. (2021) Crop Only an insurance | No Yes Damage based for different coverage levels | Binary logistic regression approach to elicit the
insurance premium is calculated. and interest rates willingness to adopt insurance
Jenkins et al. (2017) Households Public market with public | No (mentions | No Expected annual loss of the insurers minus the | Households are obliged to take flood insurance.
reinsurance scheme | what could excesses and base flood insurance premium;
FloodRe happen if the remaining loss is spread across the
competition was households based on risk. There is an option
modeled) for reinsurance and risk reduction measures.
Kalfin et al. (2022) Households No explicit interaction | Yes (model that | No Risk-based with a system that taxes the low- | NA
between insurers the paper risk areas to provide a subsidy to the high-risk
expands on areas
mentions
competition)
Kesete et al. (2014) Households One representative | No No Premiums are set via a Stackelberg leader— | Based on an expected utility function where the
insurer follower game, where the insurer determines | homeowners are expected to be risk-averse and have
the price of the premium, and the homeowner | a maximum budget for insurance based on a
decides whether or not to purchase insurance | percentage of the home value.
based on a utility function. One reinsurer
provides reinsurance at a specified price, and
the government can set constraints to both
the insurer and the homeowners. The
premium gets determined via stochastic
optimization of this system, where the insurer
wants to optimize its profit, avoid insolvency,
and maintain sufficient yearly profitability. The
premium includes a deductible and loading
factor for the insurer’'s administration costs
and profit margin. The premium should be
greater than a certain value.
Kunreuther et al. Households Two different insurance | No No Risk-based with a loading factor to cover | NA
(2013) markets: a hard (with additional cost (this loading factor is not used
capital scarcity and high in the case study). The premium also
reinsurance prices) and a considers a risk aversion parameter. The
soft one (with capital
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abundance and low
reinsurance prices). One
representative insurer.

premium is calculated for both the insurer and
reinsurer.

Loisel et al. (2020) Forestry One representative | No Yes The insurance premium is a decision variable | The decision to insure is given by a decision variable
sector insurer in the model and can be set by the insurer. The | that takes values between 0 and 1, where 1 means full
insurer sets the insurance premium by making | insurance, and 0 means no insurance. The decision to
sure it is more than the future losses multiplied | insure depends on the Faustmann value, which stands
by a discount rate connected to the cutting | for the forest land expected value.
age of the trees. The premium also includes a
loading factor. The cutting age of the trees is
determined by the forest owner and
determines the forest land expected value
(Faustmann value). The insurer sets an upper
premium, the premium that is used when the
forest owner decides to fully insure their forest.
Moosakhaani et al. Households Three insurers that all | Yes No The premium includes a deductible and a fixed | The property owners and the government decide to
(2022) and have an insurance plan number for each loss to cover other costs. buy insurance based on their payoff functions. The
government for property owners and decision is determined via the Nash equilibrium in a
an insurance plan for the game-theoretic approach where the insurers, property
government owners, and the government play a role. Government
compensation also plays a role, but keep in mind that
in this paper, the insurers also offer insurance to the
government.
Peng et al. (2014) Households One representative | No No The premium is based on the expected value | The model is run for five configurations, either allowing
insurer of the loss per building type considering | or disallowing retrofitting with or without a government
coverage of the full home value with a | subsidy and mandatory or voluntary insurance. Under
specified deductible. The premium also | voluntary insurance, the decision to insure is
contains two loading factors: one for the | determined via a Stackelberg game between the
administrative costs, and one for the profit | insurer and the homeowners. The insurer determines
margin per risk region. The insurer is expected | the premiums of various policies and decides how
to maximize its profit. In this scheme, | much reinsurance to purchase. The homeowner then
retrofitting decreases the expected loss and, | decides what policy and/or what retrofit options they
thereby, the premium charged. There is a | want to purchase. The decision-making of the
minimum premium threshold. homeowners is ultimately decided via utility
maximization. Each homeowner has a maximum
budget for homeowner insurance equal to a specified
percentage of the total home value; this percentage
varies per risk region.
Perazzini et al. (2022) Households Private and public—private | Yes (but only | No Risk-based plus profit loading, where the risk- | Willingness to pay calculated using a utility function
insurance mentions) based premium should be in the premium the | expecting the homeowners to be rational and risk-

households are willing to pay, and the profit
should be adequate.

averse.
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Pinheiro and Ribeiro Forestry One representative | No Yes There is no explicit premium calculated, but | Not explicitly stated but based on the relation between
(2013) sector insurer the maximum premium a forest owner is willing | expected loss and the premium
to pay is based on the expected risk and size
of the forest.
De Ruig et al. (2022) Households Public insurance program | No No Based on old national flood insurance program | Subjective expected utility function and affordability
with four different premiums / risk-based with a risk reduction
structures premium discount
De Ruig et al. (2023) Households Public insurance program | No No Based on old national flood insurance program | Subjective expected utility function that accounts for
with four different premiums / risk-based with a risk reduction | bounded rationality in forming risk perceptions and
structures premium discount affordability
Sacchelli et al. (2018) Forestry No explicit interaction | No Yes A base premium based on the expected | NA
sector between insurers annual loss with a risk premium to allow
insurance companies to prepare for extreme
years, variable management costs, and fixed
insurance company costs.
Sidi et al. (2017) Buildings No explicit interaction | No No The premium is calculated as random variable | NA
between insurers via different methods, via the Esscher
principle, based on the proportional hazards
approach, Wang's models, Swiss model, and
Dutch model.
Tanaka et al. (2022) Households No explicit interaction | No No The insurance premium is given per house | The ratio of households that anticipate flood risk is
between insurers type per period based on the expected annual | given; these households will buy insurance.
flood damage ratio. The insurance rate is | Households take full insurance.
multiplied by a markup rate that reflects risk
aversion. The flood risk is expected to be
perfectly reflected in the insurance premium
with the markup rate.
Tesselaar et al. Households Flood insurance systems | Yes No The premium is risk-based and includes a | The decision to insure is based on a subjective
(2020a) that involve a reinsurer: a deductible of 15% of the loss. The insurer also | expected utility function. Households can receive a
voluntary system and a increases the premium due to the uncertainty | discount on the premium by implementing disaster
semi-voluntary system of damage by multiplying a risk aversion | reduction measures. The premium should be equal or
coefficient with the volatility of damage; 99.8% | smaller than the poverty-adjusted disposable income.
of damages are considered insurable. The
insurer cannot charge a profit loading factor
but does charge a cost loading factor. Based
on market-structure, there might also be
mandatory insurance.
Tesselaar et al. Households Six stylized insurance | Yes No The premium is risk-based and includes a | The decision to insure is based on a subjective
(2020b) market structures, deductible of 15% of the loss. The insurer also | expected utility function. Households can obtain a
ranging from full increases the premium due to the uncertainty | discount on the premium by implementing disaster
mandatory to full of damage by multiplying a risk aversion | reduction measures. The premium should be equal or
voluntary and from public coefficient with the volatility of damage; 99.8% | smaller than the poverty-adjusted disposable income.
to private. Four market of damages are considered insurable. The
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forms are stylized to
European insurance
markets, and two are
hypothetical.

insurer cannot charge a profit loading factor
but does charge a cost loading factor. Based
on market-structure, there might also be
mandatory insurance.

Tesselaar et al. (2022)

Households

Four market structures,
ranging from full
mandatory to full
voluntary, with either a
risk-based or a non-risk-
based premium

Yes

No

Based on the market structure. In the
voluntary system, the premiums are risk-
based, 99.8% of damages are considered
insurable, a deductible is set as 15% of the
loss, there is a risk aversion parameter that
increases the premium, and there is no profit
loading factor, but there is a cost loading
factor. Households receive a premium
discount if they implement risk reduction
measures; the premium also contains a
reinsurance premium that is calculated in a
similar way as the insurance premium but
does contain a profit loading factor of 50% of
the underwritten risk. In the semi-voluntary
system, the premiums are still risk-based, but
many households are mandated to take
insurance. In the solidarity system, the
premiums are insensitive to risk, and all
households are mandated to take insurance.
In the public—private partnership, the
premiums are risk-sensitive up to a certain
point; insurance uptake is mandatory for
mortgage holders.

If the premium does not cause the household to fall
under the poverty line, the decision to purchase
insurance is based on maximizing an expected utility
curve, which is also dependent on whether the
household anticipated government aid after a flood.

Thompson et al.
(2015)

Annual wildfire
suppression
costs

NA

No

NA

The paper couples a wildfire simulation model
and a suppression cost model to estimate
probability distributions for the suppression
costs. The suppression cost of a fire is
comparable to an insurance premium. The
total suppression costs for a national forest is
defined as the sum of all suppression
expenditures per escaped large wildfire. The
expected value of the suppression cost is
calculated by multiplying the expected value of
the number of escaped large wildfires in a
given fire season by the expected value of the
suppression costs per large fire. The variance
of the total suppression costs is defined as the
expected value of the number of escaped
large wildfires times the variance of the

NA
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suppression costs per large fire plus the
expected value of the suppression costs per
large fire squared times the variance of the
number of escaped large wildfires.
Unterberger et al. Public Insurance is organized in | No No The premiums are based on the expected | There is no decision to take up insurance, but there is
(2019) infrastructure three market forms: one annual damage with a surcharge that | a decision to employ dry flood-proofing, which is
where there is just a represents the volatility in annual losses, which | calculated via the net-present value of the reduction in
disaster fund, one where reflects the risk aversion of reinsurers. On top | premiums over 20 years (which is considered as the
there is risk transfer to a of this premium, there is a further surcharge | lifespan of the dry flood-proofing measure).
private insurer, and one that is used to cover administrative costs and
where there is a public— generate a profit. The premiums are
private insurance calculated for both federal and regional
mechanism. The governments and include a deductible of 15%
insurance  sector is of the loss suffered.
simplified to one
representative insurer.
Walker et al. (2016) Constructed There is no explicit | No Yes Premiums are calculated based on the | NA
assets interaction between average annual risk of loss multiplied by a risk
insurers; the model works loading factor that reflects the administrative
with  one hypothetical costs and a term that increases the
insurer. nonlinearity, essentially reflecting the volatility
for the insurer.
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Supplementary table 5: participant roles

Participant Role Description

1 Actuary for insurance - Netherlands

2 Expert in climate insurance - France

3 Expert in climate insurance innovation - France

4 Catastrophe expert for commercial insurance - Italy

5 Actuarial consultant - Finland

6 Catastrophe expert for commercial insurance - Germany
7 Expert in public climate insurance - France

8 Actuary for insurance - Greece

9 Mathematician for insurance - Finland

10 Actuary for insurance - Netherlands

1" Reinsurance expert — Netherlands

12 Nat Cat and reinsurance expert - Netherlands

13 Actuary and reinsurance expert — Europe wide

14 Climate data analyst for reinsurance - Switzerland

15 Nat Cat research analyst for commercial insurance — Germany
16 Flood risk modeler - UK
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Full list of interview questions

Do you agree to participate in this interview? (yes/no)

Do you give permission for this interview to be recorded? (yes/no)

1. Is your organization using climate change risk or natural hazard risk information? (yes/no)

If no, discontinue.

2. How does your organization gather and store this information?

3. Does your organization use the information for natural disaster risk modeling purposes? (yes/no)

If no, skip to g6.

4. What types of natural hazards are modeled at your organization using climate change risk or natural hazard risk information (e.g. floods, windstorms, heatwaves, etc.)?
5. What types of insurance products are these modeled for (e.g. homeowners’ insurance, insurance against business interruption costs, etc.)?
6. Does your organization use climate change risk or natural hazard risk information for any other purpose (if yes, elaborate)?

If no to g3, discontinue.

7. Is your organization using in-house or external party natural disaster risk models?

If in-house, skip to g10.

8. Do you have insights into the components of external party natural disaster risk models so you can well interpret the results or are they a black box?
If they can interpret well, skip to g10.

9. Is it a problem for your organization that they are a black box?

If black box to g8, discontinue.

10. What specific types of climate data and other inputs are used to model the natural hazards?
11. In your opinion, are there other types of data/inputs that would facilitate a more accurate assessment of the natural hazards?
12. What type of outputs result from the natural disaster risk modeling (e.g. damage per event, risk distribution, etc.)?
13. What type of damages/losses are these outputs (e.g. direct damage to buildings, business interruption losses, etc.)?
14. Is climate change adaptation taken into account in the natural disaster risk models?
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15. Do you know what types of models are used specifically (e.g. are they catastrophe (CAT) models, econometric/actuarial models, etc.)?
If don’t know, skip to g17.

16. What types of hazards are the model types used for?

17. Do you know whether they are forward-looking natural disaster risk models that assess the risk in a future climate? (yes/no)

If no, skip to g21.

18. For these forward-looking models, do you use climate forecasts or climate projections (or both)?

19. Which type of model (forecast or projection) is better in your opinion and why?

20. Do you know what types of climate change and socio-economic scenarios are used in these forward-looking models (if yes, elaborate)?
21. In your opinion, what are the main uncertainties involved in natural disaster risk modeling?

If none stated, skip to g23.

22. Are there ways that natural disaster risk models may better address these uncertainties?
23. How can natural disaster risk modeling approaches be advanced to improve the ability of the insurance sector to cope with climate change related risks?
24. In general, are there any new scientific insights that are needed to advance natural disaster risk modeling approaches?
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Use of Gioia Methodology in deriving sub-codes

1 The Gioia Methodology inspired the process of inductively deriving the sub-codes for “Hazard”, “Uncertainties and Challenges”, and “Innovation Potential”. The Gioia Methodology is a systematic
approach to new concept development and grounded theory articulation that is designed to bring qualitative rigor to the conduct and presentation of inductive research (Gioia et al., 2013).

2 While the core principles of the Gioia Methodology were adopted, the process was tailored to the specific needs of the research:
1. Open Coding: Similar to the Gioia methodology, the analysis began with open coding, assigning initial codes to relevant data segments.

2. Building First-Order Concepts: As the analysis progressed, a natural clustering of similar topics around these initial codes was observed. These clusters represent the "first-order concepts" in the
Gioia methodology. In this study, they formed the foundation for the sub-codes.

3. Refined Sub-Codes: Unlike the Gioia methodology, which progresses to develop second-order themes and aggregate dimensions, the analysis stopped at this point. Since the sub-codes already
belonged to a broader overarching theme, further abstraction wasn't necessary. These themes included "Hazard", "Uncertainties and Challenges", and "Innovation Potential".

4.  Connecting Challenges to Innovation: The final step involved exploring the relationship between the "Uncertainties and Challenges" sub-codes and the "Innovation Potential" sub-codes. This analysis
served as the basis for the discussion section of this research.
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Example of Coding Process

0:22:17.680 --> 0:22:23.360

Participant X

Exactly. We use IPCC scenarios. But what we do internally is that we downscale them. These models or this output
from IPCC actually are as coarse as 200 kilometres by 200 kilometres, so they're not granular enough. So what we
have done internally is that we have downscaled them to a much smaller grid. We can do at least 25 kilometres to 25
kilometres. For some specific indicators, like flooding, we can do as precise as 10 metres by 10 metres, because
flooding is very local. It depends on where the building is. So we believe 25 kilometres as a resolution is not enough.

b:23:11 370 -->0:23:17.490

Jorna, M. (Mandy)

And in your opinion, what are main uncertainties that are involved in natural disaster risk modelling?

0:23:26.320 --> 0:23:53.600

Participant X

So the first main uncertainty comes from the different scenarios. So how will people react to climate change. Because
we know we take different CO2 emission scenarios in this natural catastrophe modelings. This is of course linked to
regulations. So there's a political consideration behind that, which is uncertain to us, how European Union will pick
these strict regulations looking forward.

In what we do, we also need very precise data. So it will be helpful if we have like common platform that we have data
from different European countries. For time being, what we do is at country by country level. But | believe there are
some world meteorological organisations. Which at worldwide level could have some data.

But we hope that we can have some data at European level with more precise informations. We want to have an
understanding on social and business behaviour of this kind under different scenarios so that it helps us to model
better.

So if | summarise that, the main uncertainties are the availability of information and the way businesses and also
politics will behave in the future.

0:25:28.810 --> 0:25:35.10

Jorna, M. (Mandy)

Do you think there are any ways that the models can better address these uncertainties?

0:25:47.540 --> 0:26:14.340

Participant X

Yes, what we can do internally is we backtest these models. As an insurance company, we have data. So at one side
we have this kind of weather data, climate data and on the other side we can collect data from our insured companies.
So we can fry to calibrate, back test our models and so on.

And this is one of the thing that we can do because our model is predictive. But this prediction needs to be calibrated
with what's happening worldwide. So this something that we can do. But it's not easy because you know data cleaning,
as basic as they could be, is not easy.

What we do is to leverage our strengths as insurance company, try to open our ecosystem to other research
institutions, having input from other partners around the world. And that's why we continuously improve our model to
solve these kind of solutions.
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Innovation Potential: Higher Granularity

Uncertainties & Challenges: Regulations

Innovation Potential: Data Sharing Ecosystem
Uncertainties & Challenges: Closed Off Data

Uncertainties & Challenges: Closed Off Data
Uncertainties & Challenges: Regulations

Innovation Potential: Parameter Improvements
Uncertainties ...: Assumptions an...ers Validation

Innovation Potential: Data Sharing Ecosystem
Innovation Potential: Parameter Improvements
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